1.
$$gM p \rightarrow \sim q$$
의 대우는?

 $(1) p \rightarrow q$

2. $gM^{T}H^{Q} = x^{T} + y^{T} +$ ① 내일 소풍가면, 비가 오지 않는다. ② 내일 비가 오면, 소풍 가지 않는다. ③ 내일 비가 오지 않으면, 소풍 간다. ④ 내일 소풍 가지 않으면, 비가 오지 않는다.

⑤ 내일 소풍 가면, 비가 온다.

- **3.** 실수 x, y가 $x^2 + y^2 = 1$ 을 만족할 때, 곱 xy의 최댓값을 구하면?
 - ④ $\sqrt{2}$

4. 양수 a, b, c에 대하여 a + b + c = 9일 때 abc의 최댓값은? ② 21 ③ 23 **4** 25

5. $x \ge 0$, $y \ge 0$ 이고 x + 3y = 8 일 때, $\sqrt{x} + \sqrt{3y}$ 의 최댓값은?

 \bigcirc 3

(3) $\sqrt{10}$

(4) $\sqrt{15}$

- 전체집합이 U = {0, 1, 2, 3, 4, 5, 6} 일 때, 다음 중 옳은 것은?
 ① 조건 'x² 6x + 8 = 0'의 진리집합은 {2, 3} 이다.
 - ② 조건 'x는 소수이다.'의 진리집합은 $\{1, 3, 5\}$ 이다.
 - ③ 조건 'x 는 4 의 약수이다.'의 진리집합은 {0, 1, 2, 4} 이다.
- - ④ 조건 '0 ≤ x < 4 이고 x ≠ 2 이다.'의 진리집합은 {0, 1, 3} 이다.
 ⑤ 조건 'x 는 6 의 약수이다.'의 진리집합은 {1, 2, 3} 이다.

① 자연수 n에 대하여, n^2 이 짝수이면 n도 짝수 이다. ② 자연수 n, m에 대하여 $n^2 + m^2$ 이 홀수이면, nm은 짝수이다. ③ 자연수 n에 대하여. n^2 이 3의 배수이면. n은 3의 배수이다. ④ a, b가 실수일 때, $a + b\sqrt{2} = 0$ 이면, a = 0이다.

⑤ 두 실수 a, b에 대하여, a+b>2이면, a>1 또는 b>1

7. 다음 중 항상 참이라고 할 수 없는 것은?

- 8. 명제 'p(x) 이면 q(x) 이다'가 참일 때, 두 집합 $P = \{x \mid p(x)\}, \ Q = \{x \mid q(x)\}$ 사이의 관계로 다음 중 옳은 것은?
 - ① $Q \subset P$ ② $Q^c \subset P$ ③ $P \subset Q^c$

 \bigcirc $P \subset Q$

- 두 명제 '겨울이 오면 춥다.' '눈이 오지 않으면 춥지 않다.'가 모두 참이라고 할 때, 다음 명제 중에서 반드시 참이라고 말할 수 없는 것 0? ① 추우면 눈이 온다. ② 눈이 오면 겨울이 온다.
 - ③ 눈이 오지 않으면 겨울이 오지 않는다.
 - ④ 춥지 않으면 겨울이 오지 않는다. ⑤ 겨울이 오면 눈이 온다.

10. 다음 중
$$p$$
가 q 이기 위한 필요충분조건인 것은?(a , x , y , z 는 모두 실수)

② p: 2x + 3 = 5, $q: x^2 - 2x + 1 = 0$

③ p: a > 3, $q: a^2 > 9$

① p: a < b, q: |a| < |b|

(5) p: xy = yz, q: x = z

(4) p: x > 0 of $\exists y > 0$, q: x + y > 0

11. 명제 '모든 학생들은 수학을 좋아한다.'의 부정으로 옳은 것은?

② 모든 학생들은 영어를 좋아한다.

① 모든 학생들은 수학을 좋아하지 않는다.

⑤ 어떤 학생들은 영어를 좋아한다.

- ③ 어떤 학생들은 수학을 좋아한다.
- 이 나는 그 이글는 나 그를 하시는데.④ 어떤 하새들은 스하은 조아하기 아니다.
- ④ 어떤 학생들은 수학을 좋아하지 않는다.

12. 집합 $A = \{x \mid -1 \le x \le 1, x \in A\}$ 에 대하여 $a \in A, b \in A$ 일 때,

다음 중 참인 명제는?

① 임의의 a 에 대하여 $a^2 > 0$ 이다.

② $a^2 - 1 = 0$ 을 만족하지 않는 a 가 있다.

④ 모든 a, b 에 대하여 a + b > 2 이다.

⑤ |a| = |b| 이면 ab = 1 이다.

③ 모든 a, b 에 대하여 $a^2 + b^2 = 1$ 을 만족한다.

- 13. 전체집합 $U = \{1, 2, 3, 4, 5\}$ 의 두 원소 x, y 에 대하여 다음 명제 중 거짓인 것은?
 - ① 어떤 x, y 에 대하여 $x^2 + y^2 = 5$ 이다.
 - ② 어떤 *x*, *y* 에 대하여 *x* + *y* ≤ 5 이다.
 - ③ 모든 x 에 대하여 x-1 < 5 이다.
- ④ 어떤 x에 대하여 $x^2 1 \le 0$ 이다.
- ⑤ 모든 *x* 에 대하여 |*x* − *x*²| ≥ 5 이다.

- 14. 다음 중 참인 명제는?① 2 는 홀수이다.
 - ② $\sqrt{2}$ 는 유리수이다.
 - ③ 99 는 100 보다 작다.
 - ④ Ø 은 무한집합이다.
 - ⑤ 모든 실수 *x* 에 대하여 *x*² > 0 이다.

15. 명제 '모든 실수 x, y, z에 대하여 xy = yz = zx 이다.'를 부정한 것은?

@ 시면 가스 - 레크 - 시크 - 시크

① 모든 실수 x, y, z 에 대하여 $xy \neq yz \neq zx$ 이다.

- ② 어떤 실수 x, y, z 에 대하여xy ≠ yz 이고 yz ≠ zx 이다.
 ③ 모든 실수 x, y, z 에 대하여 xy ≠ yz 이고 yz ≠ zx 이다.
- ④ 어떤 실수 x, y, z 에 대하여 $xy \neq yz$ 이고 $yz \neq zx$ 이고 $zx \neq xy$
 - 이다. ⑤ 어떤 실수 x, v, z에 대하여 rv ≠ vz 또는 vz ≠ zx 또는 zx ≠ rv
- ⑤ 어떤 실수 *x*, *y*, *z* 에 대하여 *xy* ≠ *yz* 또는 *yz* ≠ *zx* 또는 *zx* ≠ *xy* 이다.

16. 다음 중 명제 (x, y) 가 유리수이면 xy는 유리수이다.'의 이가 거짓임을 밝히기 위한 반례로 옳은 것은?

③ $x = 0, y = \sqrt{2}$ (4) $x = 1, y = \sqrt{2}$

 $5 x = \sqrt{2}, y = \sqrt{3}$

17. 두 조건 $p:|x-k| \le 1$, $q:-7 \le x \le 3$ 에서 명제 $p \to q$ 가 참일 때, k의 최댓값과 최솟값의 합을 구하면?

(2) -4

- 명제 $|x-1| \le a$ 이면 |x| < 3이다.'가 참이 되기 위한 a의 값의 범위는? (단, x, y는 실수이고, a > 0)
 - ① $0 < a \le 2$ ② 0 < a < 2 ③ $0 < a \le 4$

(5) 0 < a < 5

 $\bigcirc 0 < a < 4$

- **19.** 실수 x에 대한 두 조건 $p: 0 \le x \le 2$, $q: x+a \le 0$ 이 있다. 명제 $p \rightarrow q$ 가 참일 때, a의 최댓값을 구하여라.
 - ▶ 답:

- 실수 x 에 대하여 명제 ' $ax^2 + a^2x 6 \neq 0$ 이면 $x \neq 2$ 이다.' 가 참이기 위한 모든 실수 a 의 값의 합을 구하여라. (단, $a \neq 0$)
- ▶ 답:

21. 세 조건p, q, r에 대한 다음 추론 중 옳지 <u>않은</u> 것은?

- $p \rightarrow \sim q$ 이고 $r \rightarrow q$ 이면 $p \rightarrow \sim r$ 이다.
 - $p \rightarrow \sim q$ 이고 $\sim r \rightarrow q$ 이면 $p \rightarrow r$ 이다.
 - $q \rightarrow \sim p$ 이고 $\sim q \rightarrow r$ 이면 $p \rightarrow r$ 이다.
 - $p \rightarrow q$ 이고 $\sim r \rightarrow \sim q$ 이면 $p \rightarrow r$ 이다.
 - $p \to q$ 이고 $q \to p$ 이면 $p \leftrightarrow \sim q$ 이다.

22. 명제 p →~ q,~ q → r,~ p →~ r 가 모두 참일 때, 다음 명제 중 항상 참이 <u>아닌</u> 것은?

 \bigcirc $\sim r \rightarrow p$

4 $\sim q \rightarrow p$

- 23. 다음 두 조건으로 알 수 있는 것은?

 ① 어떤 사람은 안경을 끼지 않았다.
 ② 여자는 모두 안경을 꼈다.
 - ① 남자는 모두 안경을 꼈다.
 - ② 안경을 끼지 않은 여자도 있다. ③ 여자는 모두 안경을 끼지 않았다.
 - ④ 안경을 끼지 않은 남자도 있다.
 - ⑤ 남자는 모두 안경을 끼지 않는다.

24. 다음은 명제 $\lceil a, b, c \rceil$ 양의 정수일 때, $a^2 + b^2 = c^2$ 이면 a, b, c 중 적어도 하나는 짝수이다.」의 증명이다.

증명 주어진 명제의 대우는 $\lceil a, b, c \rceil$ 양의 정수일 때, $a, b, c \rceil$ (가)이면 $a^2 + b^2 \neq c^2$ 이다. $\rfloor a, b, c \rceil$ (가)이면, a^2, b^2, c^2 은 모두 홀수이므로 $a^2 + b^2$ 은 (나), c^2 은 (다)가 되어 $a^2 + b^2 \neq c^2$ 이다. 따라서, 대우가 참이므로 주어진 명제도 참이다.

위의 증명에서 (가), (나), (다)에 알맞은 것을 순서대로 적으면?

① 적어도 하나는 홐수. 홐수. 짝수

② 적어도 하나는 홀수. 짝수. 홀수

③ 모두 홀수. 홀수. 짝수

④ 모두 홀수, 짝수, 홀수

⑤ 모두 짝수, 홀수, 짝수

- **25.** 다음은 명제 $\lceil x, y \rceil$ 정수일 때 xy가 짝수이면 x, y 중 적어도 하나는 짝수이다.」를 증명하는 과정이다.
 - 주어진 명제의 결론을 부정하여 (가) 이면 x = 2m+1, y = (나) (m, n)은 정수) 이라 할 수 있다. 이 때, xy = 2(mn+m+n)+1 이므로 xy는 홀수이다. 이것은 가정에 모순이므로 주어진 명제는 참이다.
 - ① *x* 또는 *v* 가 짝수. 2*n*
 - ② x,y중 하나만 짝수, 2n
 - ③ x,y 중 하나만 홀수. 2n+1
 - ④ x, y 모두 홀수, 2n+1
 - ⑤ x, v 모두 짝수, 2n+1

- **26.** 다음에서 조건 p 는 조건 q 이기 위한 필요조건이지만 충분조건이 아닌 것은? (단, a, x, y는 실수)
- ① $p: a < 0, q: \sqrt{a^2} = -a$
 - ② p: xy < 0, q: x < 0 이코 y > 0
 - ③ p: xy = 0, q: x = 0 또는 y = 0
- ,
 - $(4) p: A \cup (B-A) = B, q: A \subset B$
 - ⑤ p: x, y 가 유리수, q: x+y, xy 가 유리수

27. 두 조건 p,q의 진리집합을 각각 P,Q라 하고 $\sim p$ 가 $\sim q$ 이기 위한 충분조건이지만 필요조건은 아닐 때, 다음 중 옳은 것은?

①
$$P - Q = \emptyset$$
 ② $P \cap Q = Q$ ③ $P \cap Q = P$

 \bigcirc P=Q

(4) $P^{c} = Q$

28. 전체집합 U 에 대하여 두 조건 p,q 를 만족하는 집합을 각각 P,Q 라할 때, $P \cup (Q - P) = P$ 인 관계가 성립한다면 q 는 p 이기 위한 무슨 조건인가?

- *q* 는 *p* 이기 위한 충분조건이다.
 - *p* 는 *q* 이기 위한 필요충분조건이다.
- *q* 는 *p* 이기 위한 필요조건이다.

 $p \vdash q$ 이기 위한 충분조건이다.

q 는 *p* 이기 위한 필요충분조건이다.

29. 조건 p, q, r, s에서 p, q는 어느 것이나 r 이기 위한 충분조건, s는 r이기 위한 필요조건, q 는 s 이기 위한 필요조건이라 한다. 이 때, r은 s이기 위한 무슨 조건인가 ?

⑤ 위 사실로는 알 수 없다.

- 필요조건 ② 충분조건
- ④ 아무 조건도 아니다. ③ 필요충분조건

30. a > b, x > y일 때, 다음 중 옳은 것은?

②
$$(a+b)(x+y) < 2(ax+by)$$

③ $(a+b)(x+y) \ge 2(ax+by)$

$$(a+b)(x+y) \ge 2(ax+by)$$

 $(a + b)(x + y) \le 2(ax + by)$

(a+b)(x+y) = 2(ax+by)

31. 다음은 |a| < 1, |b| < 1, |c| < 1 일 때 부등식 abc + 2 > a + b + c 가 성립함을 증명한 것이다. ⊙, ⓒ, ⓒ에 알맞은 것을 차례로 나열한 것은?

$$abc + 2 > a + b + c$$

= $abc + 1 + 1 - a - b - c$
= $(1 - ab)(1 - c) + (①)$
| $a < 1 \circ]$ 므로 (①) $< 1 - a < (②)$

같은 방법으로 (ⓒ)
$$< 1 - b < (ⓒ)$$
, (ⓒ) $< 1 - c < (ⓒ)$

또한 |ab| < 1 이므로 (ⓒ) < 1 - ab < (ⓒ)따라서 abc + 2 - (a + b + c) = (1 - ab)(1 - c) + (੨) > (ⓒ)

이므로
$$abc + 2 > a + b + c$$

①
$$(1+a)(1+b), 0, 2$$

②
$$(1-a)(1+b), 0, 2$$

$$(1+a)(1+b), -1, 1$$
 $(1-a)(1-b), 0, 2$

$$\bigcirc$$
 $(1-a)(1-b), -1, 1$

32. 다음은 실수 a, b 에 대하여 $|a+b| \le |a| + |b|$ 이성립함을 증명한 것이다.

(증명)
$$|a+b| \ge 0$$
, $|a|+|b| \ge 0$ 이므로 $|a+b|^2 \le (|a|+|b|)^2 \cong$ 증명하면 된다. $(|a|+|b|)^2 - |a+b|^2$ $= |a|^2 + 2|a||b| + |b|^2 - (a+b)^2$ $= a^2 + 2|ab| + b^2 - a^2 - 2ab - b^2$ $= 2(|ab| - ab)$ 그런데, $(?)$ 이므로 $2(|ab| - ab) \ge 0$ $\therefore |a+b|^2 \le (|a|+|b|)^2$ 따라서 $|a+b| \le |a|+|b|$ 여기서, 등호가 성립하는 경우는 (\lor) 일 때, 즉, $ab \ge 0$ 일 때이다.

위의 증명 과정에서 (가), (나)에 알맞은 것을 순서대로 적은 것은?

$$3 \mid ab \mid \leq ab, \mid ab \mid = ab$$

$$\textcircled{4} \mid ab \mid = ab, a = 0$$

$$\bigcirc$$
 | $ab |= ab, a = b$

(1) |ab| > ab, a = b

33. 0 < a < b, a + b = 1 일 때 $1, \sqrt{a} + \sqrt{b}, \sqrt{b} - \sqrt{a}, \sqrt{b - a}$ 의 대소를 비교하면?

②
$$\sqrt{b-a} < \sqrt{b} - \sqrt{a} < 1 < \sqrt{a} + \sqrt{b}$$

③ $\sqrt{b} - \sqrt{a} < \sqrt{b-a} < 1 < \sqrt{a} + \sqrt{b}$

(1) $\sqrt{b-a} < \sqrt{b} - \sqrt{a} < \sqrt{a} + \sqrt{b} < 1$

(3) $\sqrt{b} - \sqrt{a} < \sqrt{b-a} < 1 < \sqrt{a} + \sqrt{b}$

34. $4 + 2^{60}$, 3^{40} , 5^{30} 의 대소를 바르게 비교한 것은? ① $5^{30} < 3^{40} < 2^{60}$ $2^{340} < 2^{60} < 5^{30}$

 $5 2^{60} < 3^{40} < 5^{30}$

① $2^{30} > 3^{20}$ ② $2^{30} \le 3^{20}$ ③ $2^{60} > 3^{20}$

 $\textcircled{3} \ 2^{60} \ge 3^{20}$ $\textcircled{5} \ 2^{30} < 3^{20}$

- **36.** 임의의 실수 a,b,c 에 대하여 다음 중 옳지 않은 것은?
 - (1) |a| = -a
 - - - (4) $|a+b+c| \le |a|+|b|+|c|$
 - ③ $|a| \ge 0$, $|a| \ge a$, |a| = |-a| 이다.

 \bigcirc |*a* − *b*| ≥ |*a*| − |*b*|

- ② a > b > 0 일 때, $\frac{1}{a} < \frac{1}{b}$ 이다.

37. 다음 [보기] 중 항상 옳은 것을 모두 고르면?(단, a,b,c 는 실수)

보기 \Box a > b 이면 ac > bc© a < b < 0 이면 $a^2 > ab$ |a| + |b| > |a + b| \bigcirc $a^2 + b^2 + c^2 \ge ab + bc + ca$

 \bigcirc \bigcirc , \bigcirc

② □, ⊜, ¬

③ □, 킅

④ つ, □, □

(5) (7), (2), (1)

38. 한 자리의 자연수 l, m, n에 대하여 $\{l, m, n\} = \{p, q, r\}$ 가 성립한다고 한다. 이 때, $\frac{l}{p} + \frac{m}{q} + \frac{n}{r}$ 의 최소값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

39. a > 0, b > 0, c > 0일 때, $\frac{2b}{a} + \frac{2c}{b} + \frac{2a}{c}$ 의 최소값을 구하여라.

> 답:

최댓값은?

40. $a \ge 0, b \ge 0, c \ge 0$ 이고 a + b + c = 14 일 때, $\sqrt{a} + 2\sqrt{b} + 3\sqrt{c}$ 의

최댓값을 구하면?

 $4\sqrt{35}$

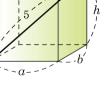
③ $3\sqrt{35}$

② $2\sqrt{35}$

(1) $\sqrt{35}$

코시-슈바르츠 부등식 $(a^2+b^2+c^2)(x^2+y^2+$ z^{2}) $\geq (ax + by + cz)^{2}$ 을 이용하여 가로, 세로. 높이가 각각 a,b,h이고, 대각선의 길이가 5인 직육면체에서 모든 모서리의 길이의 합의 최댓값을 구하면?

③ $20\sqrt{3}$



(4) $25\sqrt{5}$ $24\sqrt{6}$

② $4\sqrt{5}$

(1) $5\sqrt{3}$

43. 다음은 실수 x, y 에 대하여 $\lceil x^2 + y^2 = 1$ 이면 $x \le 1$ 또는 $y \le 1$ 이다」가 참임을 증명한 것이다. 다음 (r), (r) 에 알맞은 것을 순서대로 적은 것은?

주어진 명제 '
$$x^2 + y^2 = 1$$
 이면 $x \le 1$ 또는 $y \le 1$ 이다'의 대우인 '(가)이면 $x^2 + y^2 \ne 1$ 이다'가 참임을 증명하면 된다. (가)에서 $x^2 + y^2 >$ (나)이므로 $x^2 + y^2 \ne 1$ 가 성립한다. 따라서 대우가 참이므로 주어진 명제도 (다)이다.

① x>1 이고y>1, 1, 참 ② x>1 이고y>1, 2, 참

③ x > 1 또는 y > 1, 2, 참 ④ x ≥ 1 또는 y ≥ 1, 1, 거짓

⑤ x≥1이고y≥1, 2, 거짓

44. 두 조건 $p: x \le 3 - a$ 또는 $x \ge a, q: |x| \le 7$ 에 대하여 p 가 $\sim q$ 이기 위한 충분조건일 때, 실수 a 의 값의 범위를 구하면? (단, $a \ge 3$)

① a > 10 ② a > 7 ③ a > 3④ a > -1 ⑤ a > -4

45. 네 조건 p,q,r,s에 대하여 $p \vdash q$ 이기 위한 충분조건, $r \vdash q$ 이기 위한 필요조건, $s \vdash \sim r$ 이기 위한 충분조건 일 때 다음 중 옳은 것은?

① $r \rightarrow q$	② $q \rightarrow \sim p$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

① $r \rightarrow q$ ② $q \rightarrow \sim p$ ③ $s \rightarrow \sim q$ ④ $\sim s \rightarrow \sim p$ ⑤ $\sim r \rightarrow p$ **46.** 다음은 $\frac{1}{x} + \frac{4}{v} = 1$ 을 만족하는 두 양수 x, y에 대하여 x + y의 최솟값을 구하는 풀이이다. 적절하지 못한 부분은?

 $\therefore x + y \ge 2\sqrt{xy} \ge 2 \cdot 4 = 8 \cdots \bigcirc$

(2) (L)

4 2 (3) (**E**)

⑤ 틀린 곳이 없다.

 $\frac{1}{x} + \frac{4}{y} \ge 2\sqrt{\frac{1}{x} \cdot \frac{4}{y}} \cdots \bigcirc$ $= \frac{4}{\sqrt{xy}}$ $\therefore \sqrt{xy} \ge 4 \cdots \bigcirc$

47. $x+y+z=4, x^2+y^2+z^2=6$ 을 만족하는 실수 x, y, z에 대하여 x가 취할 수 있는 최댓값을 M, 최솟값을 m 이라 할 때, $\frac{M}{m}$ 의 값은?

- **48.** 다음 명제 ③, ⑥, ⑥가 각각 부등식 (a-1)(b-1)(c-1) > 0이기 위한 무슨 조건인지 순서대로 적으면? (단, a, b, c 는 실수)
 - ⑤ a, b, c 중 적어도 하나는 1보다 크다.
 - a, b, c 의 최댓값이 1보다 크다.
 a, b, c 의 최솟값이 1보다 크다.

 - ① 필요, 충분, 필요충분 ② 충분, 필요충분, 충분
 - ③ 필요, 필요충분, 충분 ④ 충분, 필요, 필요충분
 - ⑤ 필요, 필요, 충분

49. a > 0, b > 0, c > 0, $a^2 = b^2 + c^2$, $b + c \le ka$ 를 만족하는 양의 상수 k의 최솟값은?

① 1 ② $\sqrt{2}$ ③ $\sqrt{3}$ ④ $\sqrt{6}$ ⑤ $\sqrt{7}$

50.

사각형 모양의 철판 세 장을 구입하여, 두 장은 원 모양으로 오려 아랫면과 윗면으로, 나머지 한 장은 몸통으로 하여 오른쪽 그림과 같은 원기둥 모양의 보일러를 제작하려 한다. 철판은 사각형의 가로와 세로의 길이를 임의로 정해서 구입할 수 있고. 철판의 가격은 1 m^2 당 1만원이다. 보일러의 부피가 64 m³가 되도록 만들기 위해 필요한 철판을 구입하는데 드는 최소 비용은?

- ① 110만원
- ④ 96만원 ⑤ 90만원
- ② 104만원 ③ 100만원