②a ≠ 0 이고 b ≠ 0

① $a \neq 0$ 또는 $b \neq 0$ ③ $a \neq 0$ 이고 b = 0

(4) a = 0 이고 $b \neq 0$

(5) a = 0 이고 b = 0

- 해설 ab = 0 이면 a = 0 또는 b = 0 즉 a, b 중에서 점에도 하나는
- 즉 a, b 중에서 적어도 하나는 0 이다.

다음 중 항상 ab = 0 이 되지 않는 것은?

②에서 $a \neq 0$ 이고 $b \neq 0$ 이면 a, b 모두 0 이 아니므로 $ab \neq 0$ 이다.

2. 이차방정식
$$(x-3)^2-2=0$$
 의 두 근을 α , β 라고 할 때, $\alpha+\beta$ 의 값은?

①
$$6$$
 ② $2\sqrt{2}$ ③ $6+2\sqrt{2}$ ④ $-2\sqrt{2}$ ⑤ -6

해설
$$(x-3)^2 = 2 \circ \Box \Box \Xi$$
$$x-3 = \pm \sqrt{2}$$
$$\therefore x = 3 \pm \sqrt{2}$$

 $\alpha + \beta = (3 + \sqrt{2}) + (3 - \sqrt{2}) = 6$

3. 다음 보기 중에서 y 가 x 에 관한 이차함수인 것을 모두 고르면?

보기

①
$$y = \frac{x}{3} - 4$$

② $y = 2x^3 + x^2 - 5$

 \bigcirc $y = \frac{5}{r^2}$

$$\bigcirc$$
 \bigcirc , \bigcirc , \bigcirc , \bigcirc

해설

 $y = ax^2 + bx + c$ 에서 $a \neq 0$ 이면 이차함수 이차함수인 것은 ② ⑤,ⓒ,⑯이다. **4.** 이차함수 $y = 2x^2 - 3x$ 의 그래프는 점 (a, 2) 를 지난다. 이때, a 의 값이 될 수 있는 것을 모두 고르면?

①
$$-2$$
 ② -1 ③ $-\frac{1}{2}$ ④ $\frac{1}{2}$

해설

$$x = a, y = 2$$
 를 대입하면
 $2 = 2a^2 - 3a, 2a^2 - 3a - 2 = 0, (2a + 1)(a - 2) = 0, ∴ a =$

$$-\frac{1}{2}$$
 또는 $a = 2$

①
$$y = 3x^2$$
 ② y
④ $y = x^2$ ⑤ y

②
$$y = \frac{1}{2}x^2$$
 ③ $y = -2x^2$ ③ $y = \frac{5}{4}x^2$

해설
$$\frac{1}{2}$$
의 절댓값이 가장 작다. 따라서 $y=\frac{1}{2}x^2$ 의 그래프의 폭이 가장 넓다.

6. 이차함수 $y = 3x^2$ 의 그래프를 x 축의 방향으로 5 만큼, y 축의 방향으로 -6 만큼 평행이동하면 점 (6, k) 을 지난다고 할 때, k 의 값은?

해설
$$y = ax^2$$
 의 그래프를 y 축으로 q 만큼, x 축으로 p 만큼 평행이 동하면 $y = a(x-p)^2 + q$ 이므로 함수의 식은 $y = 3(x-5)^2 - 6$ 이다. 점 $(6, k)$ 를 지나므로 대입하면 $k = 3(6-5)^2 - 6$ 이므로 $k = -3$ 이다.

7. 주어진 이차함수 중 축의 방정식이 x = -1 이 <u>아닌</u> 식을 모두 고르면?

①
$$y = -(x+1)^2 + 4$$

③ $y = x^2 + 1$

② $y = -\frac{1}{2}(x+1)^2$

$$y = -(x-1)^2$$

8. 이차방정식 $x^2 - 3x - 2 = 0$ 을 $(x - a)^2 = b$ 의 꼴로 변형할 때, a, b의 값을 구하여라.

답:

- ightharpoonup 정답: $a = \frac{3}{2}$ 또는 1.5
- ightharpoonup 정답: $b = \frac{17}{4}$ 또는 4.25

- $x^2 3x = 2$
 - $\left(x \frac{3}{2}\right)^2 = \frac{17}{4}$ $\therefore a = \frac{3}{2}, b = \frac{17}{4}$

9. 이차방정식 $\frac{x-1}{3} = 0.2(x+1)(x-3)$ 의 해를 구하면?

①
$$x = 4 \, \text{\frac{1}{12}} \, x = -\frac{1}{3}$$
 ② $x = -4 \, \text{\frac{1}{12}} \, x = \frac{1}{3}$

③
$$x = 4 \, \text{\pm \frac{1}{12}} \, x = -3$$
 ④ $x = -4 \, \text{\pm \frac{1}{12}} \, x = 3$ ⑤ $x = \frac{1}{4} \, \text{\pm \frac{1}{12}} \, x = -\frac{1}{2}$

해설
$$10(x-1) = 6(x+1)(x-3)$$

$$10(x-1) = 6(x+1)(x-3)$$
$$10x - 10 = 6x^2 - 12x - 18$$
$$6x^2 - 22x - 8 = 0$$

$$2(3x^2 - 11x - 4) = 0$$
$$(3x + 1)(x - 4) = 0$$

$$\therefore x = 4 또는 x = -\frac{1}{3}$$

10. 두 근의 차가 4 인 이차방정식 $x^2 + 2kx + 2k - 3 = 0$ 이 있을 때, 모든 k 의 값의 곱은?

두 근을
$$\alpha$$
, $\alpha - 4$ 이라 하면 $\alpha + \alpha - 4 = -2k$, $\alpha(\alpha - 4) = 2k - 3$ $\alpha = 2 - k$

(2-k)(2-k-4) = 2k-3

: 모든 k 값의 곱은 -1 이다.

 $k^2 - 2k - 1 = 0$

11. 다음 보기의 이차함수의 그래프에 대한 설명으로 옳은 것은?

보기

$$\bigcirc$$
 $y = 3x^2$

©
$$y = -3x^2$$

$$y = \frac{1}{4}x^2$$

- ① 아래로 볼록한 포물선은 ⑤와 ⓒ이다.
- ② x 축 위쪽에 나타나지 않는 그래프는 ①,@이다
- ③ ①와 ②의 그래프는 y 축에 대하여 서로 대칭이다.
- ④ 폭이 가장 좁은 그래프는 ①이다.
- ③ 폭이 가장 넓은 그래프는 @이다.

해설

⑤ a 의 절댓값이 작을수록 폭이 넓어진다.

12. 이차함수 $y = 3x^2 + 2$, $y = 3(x - 2)^2$ 의 그래프에 대해 설명한 것으로 옳은 것은?

- ① 대칭축이 서로 같다.
- ② 꼭짓점의 좌표가 같다.
- $\textcircled{3}y = 3x^2$ 의 그래프를 평행이동한 것이다.
- ④ 모두 *x* 축과 만난다.

해설

⑤ 점 $\left(\frac{1}{3}, \frac{7}{3}\right)$ 을 지난다.

$$y = 3x^2 + 2$$
 는 $y = 3x^2$ 을 y 축으로 2 만큼 평행이동한 것이고 $y = 3(x-2)^2$ 은 $y = 3x^2$ 을 x 축으로 2 만큼 평행이동한 것이다.

13. 이차함수 $y = -3x^2 + kx + 7$ 의 그래프에서 x 의 값이 증가하면 y 의 값도 증가하는 x 의 값의 범위가 x < 4 일 때, k 의 값을 구하여라.

축의 방정식 x = 4 이므로 $y = -3x^2 + kx + 7$

$$= -3(x-4)^{2} + 55$$

$$= -3x^{2} + 24x + 7$$

$$\therefore k = 24$$

14. 다음 그림과 같이 꼭짓점의 좌표가 (-1, 6) 이고, 점 (0, 4)를 지나는 이차함수는 v = $ax^2 + bx + c$ 이다. a + b + c 의 값을 구하여 라.

$$ax^2 + bx + c$$
이다. $a + b + c$ 의 값을 구하여라.

 $\therefore a = -2$

꼭짓점의 좌표가
$$(-1, 6)$$
 이므로 $y = a(x+1)^2 + 6$ 점 $(0, 4)$ 를 지나므로 $4 = a(0+1)^2 + 6$

$$= -2x^2 - 4x + 4$$

$$\therefore a = -2, b = -4, c = 4$$

 $y = -2(x+1)^2 + 6$

$$\therefore a+b+c=(-2)+(-4)+4=-2$$

15. 이차함수
$$y = -x^2 + ax + b$$
 의 그래프가 x 축과 두 점 $(-1,0),(-4,0)$ 에서 만날 때, 꼭짓점의 좌표는?

①
$$\left(-\frac{1}{2}, \frac{1}{4}\right)$$
 ② $\left(-\frac{1}{3}, \frac{5}{4}\right)$ ③ $\left(-5, \frac{9}{4}\right)$ ④ $\left(-2, 3\right)$

$$y = -x^2$$
과 계수는 같고, x 절편이 -1 , -4 인 식의 꼭짓점이므로 $y = -(x+1)(x+4)$
$$y = -(x^2+5x+4) = -\left(x+\frac{5}{2}\right)^2 + \frac{9}{4}$$
 따라서 꼭짓점의 좌표는 $\left(-\frac{5}{2},\frac{9}{4}\right)$ 이다.

16. 이차함수 $y = -2x^2 + 2ax$ 의 최댓값이 8일 때, 상수 a 의 값을 구하면? (단, a > 0)

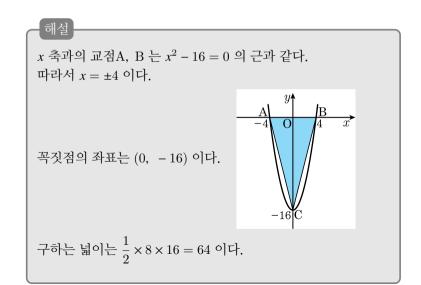
$$y = -2x^2 + 2ax$$

= $-2\left(x - \frac{a}{2}\right)^2 + \frac{a^2}{2}$
최댓값이 8 이므로 $\frac{a^2}{2} = 8$ 이다.
 $a > 0$ 이므로 $a = 4$ 이다.

17. 이차함수 $y = x^2 - 16$ 의 그래프에서 x 축과의 교점을 A, B 라 하고 꼭짓점을 C 라 할 때, \triangle ABC 의 넓이를 구하여라.

답:

➢ 정답: 64



18. 길이가 30m 인 철사를 구부려서 부채꼴 모양을 만들려고 한다. 부채 꼴의 넓이가 최대가 되도록 하는 부채꼴의 반지름의 길이를 구하면?

① $\frac{15}{2}$ m ② 8m ③ $\frac{17}{2}$ m ④ 3m

⑤ 5m

부채꼴의 넓이를
$$y \text{ m}^2$$
, 반지름의 길이를 $x \text{ m}$ 라 하면 $y = \frac{1}{2} \times x \times (30 - 2x)$ 이다.

$$y = \frac{1}{2} \times x \times (30 - 2x)$$

$$= x(15 - x)$$

$$= -x^{2} + 15x$$

$$= -\left(x^{2} - 15x + \frac{225}{4} - \frac{225}{4}\right)$$

 $=-\left(x-\frac{15}{2}\right)^2+\frac{225}{4}$ 이차함수는 위로 볼록이므로 꼭짓점이 최댓값을 나타낸다.

따라서 꼭짓점이 $\left(\frac{15}{2},\frac{225}{4}\right)$ 이므로 반지름의 길이가 $\frac{15}{2}$ m 일

때, 부채꼴의 넓이가 최댓값 $\frac{225}{4}$ m² 을 가진다.

19. 부등식 $2 \le 2x - 2 < 5$ 를 만족시키는 두 자연수가 이차방정식 $x^2 + ax + b = 0$ 의 근일 때, $a^2 - b^2$ 의 값은?

해설
부등식 2 ≤ 2x - 2 < 5를 풀면 다음과 같다.
4 ≤ 2x < 7
2 ≤ x <
$$\frac{7}{2}$$

∴ x = 2, 3
이 두 자연수를 근으로 가지므로 이를 이차방정식에 대입하여
 풀면
 $a = -5, b = 6$
∴ $a^2 - b^2 = (-5)^2 - 6^2 = 25 - 36 = -11$

20. 이차방정식
$$x^2 - 2x - 1 = 0$$
 의 한 근이 m 일 때, $\frac{m^2}{1 + 2m} - \frac{6m}{1 - m^2}$ 의 값을 구하면?

① 1 ② 2 ③ 3 ④ 4

이차방정식 $x^2 - 2x - 1 = 0$ 에 x = m 을 대입하면.

$$m^{2} - 2m - 1 = 0$$

$$1 + 2m = m^{2}, 1 - m^{2} = -2m$$

$$\therefore \frac{m^{2}}{1 + 2m} - \frac{6m}{1 - m^{2}} = \frac{m^{2}}{m^{2}} - \frac{6m}{-2m} = 1 + 3 = 4$$

21. 서로 다른 두 수
$$x$$
, y 에 대하여 $9x^2 + 18xy + 9y^2 = 2x + 2y$ 의 관계가 성립할 때, $x + y$ 의 값을 모두 구하여라.

답:

$$ightharpoonup$$
 정답: $rac{2}{9}$

$$9(x+y)^2 - 2(x+y) = 0$$

 $A = x + y$ 라 하면 $A(9A-2) = 0$ 이다.

$$\therefore A = 0$$
 또는 $A = \frac{2}{9}$ 이다.
 $\therefore x + y = 0$ 또는 $x + y = \frac{2}{9}$

22. 두 이차방정식 $x^2 - 12x + a = 0$, $(x - b)^2 = 0$ 의 근이 같고 근의 개수는 1개일 때, a + b의 값은?

23. 이차방정식
$$4x^2 - kx + 9 = 0$$
 이 중근을 가질 때, 두 양의 정수 k , $k - 5$ 를 두 근으로 하는 이차방정식 A 는? (단, A 의 이차항의 계수는 1 이다.)

①
$$x^2 + 19x + 84 = 0$$

② $x^2 - 19x - 84 = 0$
③ $x^2 - 84x + 19 = 0$
④ $x^2 - 19x + 84 = 0$

해설
$$4x^{2} - kx + 9 = 0 \text{ 이 중근을 가지므로}$$

$$k^{2} - 4 \times 4 \times 9 = 0$$

$$k = 12 (\because k > 0)$$
따라서 두 근은 12, 7
$$\therefore (x - 12)(x - 7) = 0$$

$$\therefore x^{2} - 19x + 84 = 0$$

카드가 있다. 2 장을 뽑아 만들 수 있는 두 자리 자연수가 모두 56 개 일 때. n 의 값을 구하여라.

- 답:
- ▷ 정답: 8

0 을 포함하지 않는 자연수를 만들 때. 2 장을 뽑아 만들 수 있는 두 자리의 자연수의 개수는 n(n-1) 이다. n(n-1) = 56

$$n^2 - n - 56 = 0$$
$$(n+7)(n-8) = 0$$

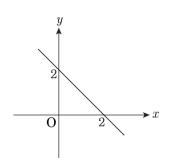
따라서 n = 8 (:: n 은 자연수)이다.

25. 일차함수 y = ax + b 의 그래프가 다음 그림과 같을 때, 이차함수 $y = \frac{1}{2}ax^2 + bx + 3$ 의 꼭짓 점의 좌표를 구하면?

해설
$$a = -2, b = 4 이므로$$
$$y = \frac{1}{2}ax^2 + bx + 3$$

 $= \frac{1}{2}ax^2 + bx + 3$ $= -x^2 + 4x + 3$ $= -(x-2)^2 + 7$

= -(x-2)² + 7 따라서 꼭짓점의 좌표는 (2,7)이다. **26.** 다음 그림은 일차함수 y = ax + b 의 그 래프이다. 이차함수 $y = \frac{1}{2}ax^2 + bx + 3$ 의 그래프의 최댓값을 구하여라.



기울기
$$a = -1$$
, y 절편 $b = 2$
$$y = \frac{1}{2}ax^2 + bx + 3$$

 $= -\frac{1}{2}x^2 + 2x + 3$

$$= -\frac{1}{2}(x-2)^2 + 5$$
 $x = 2$ 일 때, 최댓값은 5 이다.

27. 이차방정식 $ax^2 + bx + ca = -b$ 가 a 의 값에 관계없이 항상 x = 1 을 근으로 가질 때, bc 의 값을 구하여라.

$$a+b+ca=-b$$
 a에 대하여 정리하면

x = 1을 주어진 이차방정식에 대입하면

$$(1+c)a + 2b = 0$$

이 식이 a 의 값에 관계없이 항상 성립하려면

$$b = 0, c = -1$$

$$bc = 0$$

28. 이차방정식 $x^2 + bx + c = 0$ 이 이차방정식 $x^2 - 5x - a = 0$ 과의 공통근 2 를 중근으로 가질 때, a + b + c 의 값을 구하여라.

$$x = 2$$
 가 두 이차방정식의 공통의 해이므로,
 $x = 2$ 를 $x^2 - 5x - a = 0$ 에 대입하면 $4 - 10 - a = 0$
 $\therefore a = -6$

또
$$x^2 + bx + c = 0$$
은 $x = 2$ 가 중근이므로 $(x-2)^2 = 0$

$$\begin{vmatrix} x^2 - 4x + 4 = 0 \\ \therefore b = -4, c = 4 \end{vmatrix}$$

$$\therefore a+b+c=-6+(-4)+4=-6$$

x 에 관한 이차방정식 $x^2 + 2n^2 - 2x + 2n^2x = 0$ 의 두 근을 $p_n,\;q_n$ 이라 하고, $S(n)=rac{1}{(p_1-1)(q_1-1)}+rac{1}{(p_2-1)(q_2-1)}+\cdots+$

$$\frac{1}{(p_n-1)(q_n-1)}$$
 이라고 한다. $S(15)=\frac{b}{a}$ 일 때, $a-b$ 의 값을 구하여라. (단, a,b 는 서로 소이다.)

▷ 정답: 16

$$x^{2} + 2n^{2} - 2x + 2n^{2}x = 0$$

$$x^{2} - (2 - 2n^{2})x + 2n^{2} = 0$$

$$p_{n} + q_{n} = 2 - 2n^{2}$$

$$p_{n} = 2n^{2} = 0$$

$$p_n + q_n = 2 - 2n^2$$

 $p_n q_n = 2n^2$ 이므로

$$q_n + q_n = 2 - 2n^2$$
 $q_n = 2n^2$

$$\frac{1}{p_n - 1)(q_n - 1)}$$

$$\frac{p_n q_n = 2n^{-1} = \frac{1}{(p_n - 1)(q_n - 1)} = \frac{1}{p_n q_n - (p_n + q_n) + 1} = \frac{1}{1}$$

$$\frac{1}{(n-1)(q_n-1)}$$

$$\frac{1}{(p_n-1)(q_n-1)} =$$

$$\frac{1}{(p_n-1)(q_n-1)} =$$

$$(p_n - 1)(q_n - 1) = \frac{p_n q_n - (p_n + q_n)}{1}$$

$$= \frac{1}{2n^2 + 2n^2 - 2 + 1}$$

$$= \frac{1}{4n^2 - 1}$$

$$= \frac{2n}{4n^2 - 1}$$

$$= \frac{1}{(2n - 1)(1 + 1)}$$

$$= \frac{1}{(2n-1)(2n+1)}$$
$$= \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

$$\therefore S(n) = \frac{1}{(p_1-1)(q_1-1)} + \frac{1}{(p_2-1)(q_2-1)} + \dots + \frac{1}{(p_n-1)(q_n-1)} = \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \frac{1}{5} - \frac{1}{7} \right)$$

$$+ \dots + \frac{1}{2n-1} - \frac{1}{2n+1}$$

$$= \frac{1}{2} \left(1 - \frac{1}{2n+1} \right)$$

$$\therefore S(15) = \frac{1}{2} \left(1 - \frac{1}{31} \right) = \frac{15}{31} = \frac{b}{a}$$

따라서 $a - b = 16$ 이다.

30. 지면에서 초속
$$25m$$
 로 똑바로 위로 던진 공의 t 초 후의 높이를 hm 라고 하면 $h = 25t - 5t^2$ 인 관계가 있다고 한다. 공이 $20m$ 이상의 높이에서 머무는 시간을 A 라고 할 때, A 의 값은?

$$25t - 5t^{2} = 20$$

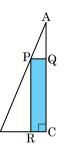
$$5t^{2} - 25t + 20 = 5(t^{2} - 5t + 4) = 5(t - 4)(t - 1) = 0$$

$$\therefore t = 1, 4$$

$$\therefore A = 4 - 1 = 3 \ (\overline{-})$$

직각삼각형 ABC 의 빗변 위의 한 점 P 에서 나머지변에 내린 수선의 발을 각각 Q, R 이라고 하자. 사각형 PQCR 의 넓이가 120 일 때, 선분 BR 의 길이를구하여라. (단, $\overline{
m BR}$ > $\overline{
m RC}$)

31. 다음 그림과 같이 $\angle C = 90^\circ$, $\overline{AC} = 36$, $\overline{BC} = 15$ 인



급

▷ 정답: 10

해설
$$\triangle APQ \ \triangle ABC \ T 닮음이므로$$
 $\overline{PQ} = x \ \text{라 하면 } \overline{AQ} = \frac{12}{5}x$ $\overline{QC} = 36 - \frac{12}{5}x$

파라서 $x\left(36 - \frac{12}{5}x\right) = 120$ $x^2 - 15x + 50 = 0$

(x-10)(x-5)=0

x > 0 이므로 x = 10또는 x = 5

∴ $\overline{BR} > \overline{RC}$ 이므로 $\overline{BR} = 10$

32. 두 이차함수 $y = 3x^2$, $y = 2x^2 + 10$ 의 그래프로 둘러싸인 도형의 내부에 있는 점 중, x, y 좌표가 모두 정수인 점의 개수를 구하여라.

<u>개</u>

➢ 정답: 35개

해설

두 그래프의 교점의 x 좌표를 구하면 $3x^2 = 2x^2 + 10$ $\therefore x = \pm \sqrt{10}$

$$\sqrt{10}$$
이고,

y 좌표의 범위는 $3x^2 < y < 2x^2 + 10$ 정수인 x 좌표는 -3, -2, -1, 0, 1, 2, 3

(1) $x = \pm 3$ 일 때, 27 < y < 28 이므로 정수인 y는 없다.

(2) $x = \pm 2$ 일 때, 12 < y < 18 이므로 y = 13, 14, 15, 16, 17

이때 두 그래프로 둘러싸인 영역의 x 좌표의 범위가 $-\sqrt{10} < x < 1$

(3) $x = \pm 1$ 일 때, 3 < y < 12 이므로 y = 4, 5, 6, 7, 8, 9, 10, 11 (4) x = 0 일 때, 0 < y < 10 이므로 y = 1, 2, 3, 4, 5, 6, 7, 8, 9 따라서 x 좌표와 y 좌표가 모두 정수인 점은

 $2 \times (5+8) + 9 = 35($ 개) 이다.

33. f(-3) = 15, $f(x^2) \cdot (x^2 + x + 3) = f(x)$ 를 만족하는 함수 f(x) 에 대하여 f(-9) 의 값을 구하여라.

$$ightharpoonup$$
 정답: $rac{125}{93}$

$$f(-x) = f(x^2) \cdot (x^2 - x + 3)$$
$$= \frac{f(x)}{(x^2 + x + 3)} \cdot (x^2 - x + 3)$$
이 식에 $x = 9$ 를 대입하면

 $f(x^2) \cdot (x^2 - x + 3) = f(-x)$ 이므로

이 식에
$$x = 9$$
 를 대입하면
$$f(-9) = \frac{\frac{5}{3}}{\frac{3}{93}} \times 75 = \frac{125}{93}$$
 이다.