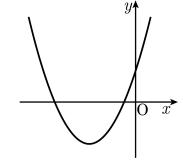

- 이차함수 $y = 3ax^2$ 의 그래프가 다음과 같을 때, 상수 a 의 값의 범위는? 1.

$$0 < 3a < 5$$
 이므로
$$\therefore 0 < a < \frac{5}{3}$$

$$\therefore 0 < a < a$$


2. 다음 중 아래 주어진 이차함수의 그래프를 x 축에 대칭인 것끼리 바르게 짝지어 놓은 것은?

 $y = 3x^2 + 2$ $y = 2(x - 1)^2$ $y = 2x^2$ $y = -3x^2 - 2$

① ¬,C 2 ¬,C ③¬,B 4 C,E 5 C,E

 $y = ax^2 + q$ 와 x 축에 대칭인 함수는 $y = -ax^2 - q$ 이다.

 $oldsymbol{3}$. 다음 이차함수 $y=a(x-p)^2+q$ 의 그래프이다. a , p , q 의 부호를 각각 구하면?

 $\bigcirc a > 0, p < 0, q < 0$

① a > 0, p > 0, q > 0

② a > 0, p > 0, q < 0

- ⑤ a < 0, p > 0, q < 0

이차함수 그래프의 모양이 아래로 볼록이므로 a>0 이다.

또한, 꼭짓점의 좌표는 $(p,\ q)$ 이고 제3 사분면에 있으므로 p < 0, q < 0 이다. 따라서 a > 0, p < 0, q < 0 이다.

- 4. 이차방정식 $x^2-x-1=0$ 의 한 근을 a , $x^2-2x-3=0$ 의 한 근을 b라고 할 때, $a^2 - a - b^2 + 2b$ 의 값은?

- ② -1 ③ 0 ④ 1 ⑤ 2

 $x = a 를 x^2 - x - 1 = 0$ 에 대입하면

 $a^2 - a - 1 = 0$ 에서 $a^2 - a = 1$

 $x = b 를 x^2 - 2x - 3 = 0$ 에 대입하면

 $b^{2}-2b-3=0 \text{ odd} b^{2}-2b=3$ ∴ $a^{2}-a-b^{2}+2b=a^{2}-a-(b^{2}-2b)=1-3=-2$

- 5. 이차방정식 $x^2 + 4x 1 = 0$ 을 $(x + a)^2 = b$ 의 꼴로 고칠 때, ab 의 값을 구하여라.
 - ₩ 글 T이익니. 답:

▷ 정답: 10

 $x^2 + 4x - 1 = (x+2)^2 - 5 = 0$

 $(x+2)^2 = 5$

a = 2, b = 5 $\therefore ab = 10$

이차방정식 $(x-1)^2 = a+4$ 에 대한 보기의 설명 중 옳은 것을 모두 **6.** 고른 것은?

보기

 \bigcirc a=0 이면 두 근의 곱은 3 이다.

 \bigcirc a = -4 이면 중근 1 을 갖는다.

 \bigcirc a=-5 이면 실수인 해를 갖지 않는다.

해설

① □ ② □ ③ ¬, □ ④ ¬, □ ⑤ □, □

 \bigcirc a=0 이면 $(x-1)^2=4$, $x-1=\pm 2$

따라서 x = 3또는 x = -1이므로 두 근의 곱은 -3이다. $\bigcirc a = -4$ 이면 $(x-1)^2 = 0$

따라서 x = 1 (중근)이다.

없으므로 실수의 해가 없다.

- 7. 이차방정식 $2x^2 + ax + b = 0$ 의 두 근이 2 , 3 일 때 $x^2 bx + a = 0$ 의 두 근을 구하면?
- ① $1 \pm \sqrt{46}$ ② $4 \pm \sqrt{46}$ ③ $6 \pm \sqrt{46}$
- (4) $6 \pm 2\sqrt{13}$ (5) $6 \pm 2\sqrt{26}$

두 근의 합 $-\frac{a}{2} = 5$, a = -10두 근의 곱 $\frac{b}{2} = 6$, b = 12 $x^2 - 12x - 10 = 0$ $\therefore x = 6 \pm \sqrt{46}$

- 이차방정식 $x^2 + ax + b = 0$ 의 해가 2, 3 이라고 한다. 이때, bx^2 8. ax + 6 = 0 의 두 근의 합과 곱은?
 - ① 합 : $\frac{5}{6}$, 곱 : -1 ②합 : $-\frac{5}{6}$, 곱 : 1 ③ 합 : $-\frac{6}{5}$, 곱 : -1 ④ 합 : $\frac{6}{5}$, 곱 : -1 ⑤ 합 : $-\frac{6}{5}$, 곱 : 1

 $x^2 + ax + b = 0$ 에서 해가 2, 3 이므로 (두 근의 합)= -a = 5 $\therefore a = -5$

(두 근의 곱)= 6 = *b*

 $a = -5, b = 6 \stackrel{\triangle}{=} bx^2 - ax + 6 = 0$ 에 대입하면 $6x^2 + 5x + 6 = 0$

따라서 (두 근의 합)= $-\frac{5}{6}$, (두 근의 곱)= 1

9. 이차방정식 $2x^2 + 8x + 2 = 0$ 의 한 근을 a 라고 할 때, $a + \frac{1}{a}$ 의 값을 구하여라.(단, $a \neq 0$)

▶ 답:

▷ 정답: -4

 $2x^2 + 8x + 2 = 0$ 의 한 근이 a 이므로 $2x^2 + 8x + 2 = 0$ 에 a 를 대입하면 $a^2 + 4a + 1 = 0$, 각 항을 a 로 나누면 $a + 4 + \frac{1}{a} = 0$, ∴ $a + \frac{1}{a} = -4$

10. 다음은 이차방정식 A 와 A 의 한 근 B 를 나타낸 것일 때, 유리수 a 의 값은?

> $A: -a = (x+1)^2$ $B:-1-\sqrt{3}$

 $\bigcirc -3$ ② -2 ③ -1 ④ 1 ⑤ 3

이차방정식의 계수가 모두 유리수이므로 $-1-\sqrt{3}$ 가 근이면

 $-1+\sqrt{3}$ 도 근이다. $-a = (x+1)^2, \ x^2 + 2x + a + 1 = 0$

근과 계수와의 관계에서

두 근의 곱은 a + 1 = -2

∴ *a* = -3

11. 한 근이 $5-2\sqrt{3}$ 인 이차방정식을 $4x^2+bx+c=0$ 의 꼴로 나타낼 때, c-b 의 값을 구하여라.

답:

▷ 정답: 92

-해설 다른 한 근이 5 + 2 √3 이므로

(두 근의 합) = 10, (두 근의 곱) = 13따라서 $4(x^2 - 10x + 13) = 0$ 이므로 $4x^2 - 40x + 52 = 0$ 이다. 따라서 b = -40, c = 52, c - b = 92

 ${f 12}$. 지면에서 초속 $40{
m m}$ 의 속도로 쏘아 올린 물체의 t 초 후의 높이를 $h{
m m}$ 라 할 때, $h=40t-5t^2$ 이다. 물체가 지면에 떨어지는 것은 쏘아 올린 지 몇 초 후인가?

- ④8초후⑤ 9초후
- ① 5초후 ② 6초후 ③ 7초후

해설

지면에 떨어지는 것은 높이가 0 일 때이다.

 $0 = 40t - 5t^2, \ t^2 - 8t = 0 \rightarrow t(t - 8) = 0$ t > 0 이므로 t = 8∴ 8 초 후

- 13. 이차함수 $y = \frac{1}{2}x^2$ 의 그래프를 x축에 대하여 대칭이동한 후 다시 x축의 방향으로 -3 만큼, y 축의 방향으로 6 만큼 평행이동시켰더니 $y = a(x-p)^2 + q$ 의 그래프가 되었다. 이 때, apq 의 값은?
- ① 6 ② -6 ③ 8
- ⑤ -9

x축에 대하여 대칭이동하면

 $y = -\frac{1}{2}x^2$ x축의 방향으로 -3만큼, y축의 방향으로 6만큼 평행이동하면

$$y = -\frac{1}{2}(x+3)^2 + 6$$

$$y = \frac{1}{2}(x + \theta)^{-1}$$

$$\therefore a = -\frac{1}{2}, \ p = -3, \ q = 6$$

$$\therefore apq = \left(-\frac{1}{2}\right) \times (-3) \times 6 = 9$$

14. 다음 보기의 이차함수에 대한 설명 중 옳지 않은 것은?

- ② 꼭짓점이 원점인 포물선은 @이다.

① 위로 볼록한 포물선은 ①이다.

- ③ 축의 방정식이 x=0 인 이차함수는 ①,@이다.
- ④ 폭이 가장 좁은 포물선은 ⊙이다. ⑤ 꼭짓점이 x 축 위에 있는 이차함수는 \mathbb{C} , \mathbb{Q} 이다.

③ 축의 방정식이 x=0인 이차함수는 ①, ②,

,

이 이다.

15. 다음 보기는 이차함수 $y = -(x+2)^2 - 1$ 의 그래프에 대한 설명이다. 옳은 것을 고르면?

- \bigcirc 축의 방정식은 x=2 이다.
- © y 축과 만나는 점의 좌표는 (0, −5) 이다.
- ⓒ 그래프는 제2, 3, 4 사분면을 지난다.
- ② 그래프는 x < -2 에서 x 의 값이 증가할 때, y 의 값은 감소한다.
- 방향으로 -1 만큼 평행이동한 것이다.

해설

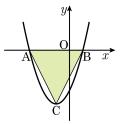
 \bigcirc 축의 방정식은 x = -2 이다. ⓒ 그래프는 제3, 4 사분면을 지난다. @ x < -2 에서 x 의 값이 증가할 때 y 의 값도 증가한다. **16.** 이차함수 $y = -\frac{1}{3}(x-1)^2 + 10$ 의 그래프를 x 축의 방향으로 p 만큼, y 축의 방향으로 q 만큼 평행이동시켰더니 $y=-\frac{1}{3}(x+4)^2-2$ 와 포개어졌다. pq 의 값을 구하여라.

▶ 답:

▷ 정답: 60

 $y = -\frac{1}{3}(x - 1 - p)^{2} + 10 + q$ $= -\frac{1}{3}(x + 4)^{2} - 2$ -1 - p = 4, p = -5 10 + q = -2, q = -12 $\therefore pq = 60$

- **17.** 이차함수 $y = 2(x-4)^2 6$ 의 그래프를 x 축 방향으로 p 만큼, y 축 방향으로 q 만큼 평행이동하여 $y=2(x+3)^2+3$ 이 되었다. p+q 의 값은?
 - ① -10 ② -2 ③ 2 ④ 6 ⑤ 8


해설

 $y = 2(x-4-p)^2 - 6 + q$ $= 2(x+3)^2 + 3$

 $-4 - p = 3, \ p = -7$

 $-6 + q = 3, \ q = 9$ $\therefore p+q=2$

18. 이차함수 $y = x^2 + 2x - 3$ 의 그래프가 x 축과 만나는 점의 좌표를 각각A , B 라 하고 꼭짓점 의 좌표를 C 라 하자. 이 때 $\triangle ABC$ 의 넓이를 구하여라.

▶ 답:

▷ 정답: 8

- i) x축과의 교점 A, B의 좌표는 y=0일 때 x의 값이다. $x^2 + 2x - 3 = 0$
- (x+3)(x-1) = 0
- x = -3 또는 x = 1 $\therefore A(-3, 0), B(1, 0)$
- ii) $y = x^2 + 2x 3$
- $= (x^{2} + 2x + 1) 1 3$ $= (x + 1)^{2} 4$
- $\therefore C(-1, -4)$
- iii) $\triangle ABC = 4 \times 4 \times \frac{1}{2} = 8$

19. 이차방정식 $x^2-mx-2=0$ 의 두 근을 α , β 라고 할 때, $\alpha^2\beta+\alpha\beta^2=4$ 일 때, m 의 값을 구하여라.

▶ 답:

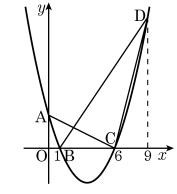
▷ 정답: -2

 $\alpha + \beta = m, \, \alpha \beta = -2$ 이므로 $\alpha^2\beta + \alpha\beta^2 = \alpha\beta(\alpha + \beta) = m \times (-2) = 4$

 $\therefore m = -2$

 ${f 20}$. 다음 그림과 같이 한 변의 길이가 $20\,{
m cm}$ 인 정 ${f A_I}$ 사각형 ABCD 가 있다. 점 F 는 변 BC 위를 점 C 로부터 B 까지 매초 $2\,\mathrm{cm}$ 의 속력으로 움직이고, 점 E 는 변 AB 위를 점 B 로부터 A 까지 매초 1 cm 의 속력으로 움직이고 있다. E 두 점 E, F 가 동시에 출발하였다면 몇 초 후 B 에 $\Delta \mathrm{BEF}$ 의 넓이가 정사각형 넓이의 $\frac{1}{16}$ 배가 되는지 구하여라.

<u>초</u>


▷ 정답: 5 초

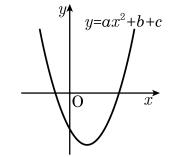
▶ 답:

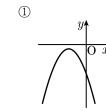
해설

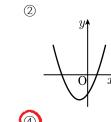
x초 후에 $\overline{\mathrm{BF}}=(20-2x)\,\mathrm{cm}$, $\overline{\mathrm{BE}}=x\,\mathrm{cm}$ $\Delta \mathrm{BEF}$ 의 넓이는 $\frac{1}{2}\overline{\mathrm{BF}} imes \overline{\mathrm{BE}}$ 이고, 정사각형 넓이인 $20 \times 20 = 400 \, \mathrm{cm^2}$ 의 $\frac{1}{16}$ 배 인 $25 \, \mathrm{cm^2}$ 이므로

 $\frac{1}{2}(20 - 2x)x = 25$ $x^{2} - 10x + 25 = 0$ $(x - 5)^{2} = 0$ ∴ x = 5 (초)(단, 0 < x < 10) **21.** 다음 그림은 이차함수 $y = ax^2 + bx + c$ 의 그래프이다. 삼각형 ABC 의 넓이가 $\frac{15}{2}$ 일 때, 삼각형 BCD 의 넓이를 구하여라.

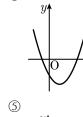
답: ▷ 정답: 30

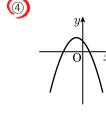

$$\triangle ABC = \frac{1}{2} \times (6-1) \times c = \frac{15}{2}$$
 이다.

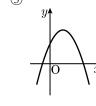

$$c = 3$$
, 즉 A(0,3) 이다.
 $y = ax^2 + bx + 3 = a(x-1)(x-6) = ax^2 - 7ax + 6a$


$$y = ax^2 + bx + 3 = a(x - 1)(x - 6) = ax^2 - 7$$

 $6a = 3, \ a = \frac{1}{2}, \ b = -\frac{7}{2}$ 이다.


$$y = \frac{1}{2}x^2 - \frac{7}{2}x + 3$$
 이므로 D(9,12) 이다.
 $\triangle BCD = \frac{1}{2} \times (6-1) \times 12 = 30$


22. $y = ax^2 + bx + c$ 의 그래프가 다음과 같을 때, $y = cx^2 + bx + a$ 의 그래프의 모양은 어느 것인가?



아래로 볼록한 포물선이므로 a > 0

꼭짓점의 x 좌표 $-\frac{b}{2a} > 0$ 이므로 b < 0

y 절편 c < 0따라서 $y = cx^2 + bx + a$ 의 그래프는 위로 볼록하고 꼭짓점의 x

좌표 $-\frac{b}{2c} < 0$, y 절편 a > 0 인 포물선이다.

23. 이차방정식 $x^2 - px + 1 = 0$ 의 한 근을 $a, x^2 + qx - 3 = 0$ 의 한 근을 b 라 하고, pa - qb = 2 를 만족할 때, $a^2 + b^2$ 의 값을 구하여라.

▶ 답:

➢ 정답: 4

 $x^2 - px + 1 = 0$ 에 x = a 를 대입하면 $a^2 - pa + 1 = 0$, $a^2 - pa = -1$ \cdots ① $x^2 + qx - 3 = 0$ 에 x = b 를 대입하면 $b^2 + qb - 3 = 0$, $b^2 + qb = 3$ \cdots ② ① \Rightarrow 한면 $a^2 - pa + b^2 + qb = 2$ 이고 $a^2 - a^2 + b^2 - (a^2 - a^2) = 2$ $a^2 + b^2 - 2 = 2$ $a^2 + b^2 - 2 = 2$ $a^2 + b^2 = 4$

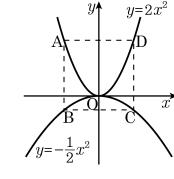
24. 이차방정식 $\frac{a-2}{4}x^2 + ax + 2a + 1 = 0$ 이 서로 다른 두 근을 갖도록 하는 모든 정수 a의 합을 구하여라.

▶ 답: ▷ 정답: 4

해설
$$\frac{a-2}{4}x^2 + ax + 2a + 1 = 0 \text{ 이 서로 다른 두 근을 가지므로}$$

$$D = a^2 - 4\left(\frac{a-2}{4}\right)(2a+1) > 0$$

$$\begin{vmatrix} a^2 - 3a - 2 < 0 \\ 3 - \sqrt{17} & 3 + \sqrt{17} \end{vmatrix}$$


$$a^{2} - 3a - 2 < 0$$

$$\therefore \frac{3 - \sqrt{17}}{2} < a < \frac{3 + \sqrt{17}}{2} \text{ (단, } a \neq 2 \text{)}$$

$$\therefore \frac{3 - \sqrt{17}}{2} < a < 2 또는 2 < a < \frac{3 + \sqrt{17}}{2}$$
따라서 $a = 0$ 1 3 이므로 하우 4 이다

따라서
$$a = 0, 1, 3$$
 이므로 합은 4 이다.

25. 다음 그림과 같이 두 이차함수 $y = 2x^2$, $y = -\frac{1}{2}x^2$ 의 그래프 위에 있는 네 점 A, B, C, D 가 정사각형을 이룰 때, 점 D 의 x 좌표는?

- ① $\frac{2}{3}$ ② 1 ③ $\frac{4}{3}$ ④ $\frac{5}{3}$

점 D 의 좌표를 $(a, 2a^2)$ 이라고 하면

A(
$$-a$$
, $2a^2$), B $\left(-a$, $-\frac{1}{2}a^2\right)$, C $\left(a$, $-\frac{1}{2}a^2\right)$ 이코, $\overline{\mathrm{DC}} = \overline{\mathrm{BC}}$ 이므로 $2a^2 + \frac{1}{2}a^2 = 2a$, $5a^2 = 4a$, $a = \frac{4}{5}$ ($\because a \neq 0$)