$$\textcircled{4} (4, -1)$$
  $\textcircled{5} (1, 4)$ 

해설
$$y = -3x^2 + 6x + 1$$
$$= -3(x^2 - 2x + 1 - 1) + 1$$

= -3(x - 1)<sup>2</sup> + 4 이므로 꼭짓점의 좌표는 (1, 4) 이다. **2.** 이차함수  $y = x^2 + 2ax + 4$  의 그래프의 꼭짓점의 좌표가 (1,b) 일 때, a + b 의 값은?

해설  

$$y = x^2 + 2ax + 4 = (x + a)^2 - a^2 + 4$$
꼭짓점의 좌표가 (1,b) 이므로

a = -1, b = 3

 $-a = 1, -a^2 + 4 = b$ 이다.

 $\therefore a + b = 2$ 

3. 이차함수  $y = -x^2$  의 그래프를 x 축의 방향으로 2 만큼, y 축의 방향으로 -3 만큼 평행이동한 식은?

① 
$$y = -x^2 + 4x + 1$$
 ②  $y = x^2 - 4x + 1$ 

$$y = -x + 4x - 6$$

$$y = -(x-2)^2 - 3 = -x^2 + 4x - 7$$

4. 다음 이차함수의 그래프 중 위로 볼록하면서 폭이 가장 좁은 것은?

① 
$$y = \frac{1}{2}x^2 - 3$$
 ②  $y = 2(x - 3)^2 + 4$   
③  $y = 3x^2$  ④  $y = -3x^2 + 3$ 

해설 위로 볼록하면  $x^2$  의 계수는 음수이고 폭이 좁으면  $x^2$  의 계수의 절댓값이 크다.

5. 다음 보기의 이차함수의 그래프 중 이차함수  $y = -2x^2$  의 그래프를 평행이동하여 완전히 포갤 수 없는 것을 모두 고르면?

②  $y = -2(x-1)^2$ 

(4)  $y = x^2 - 2x - (1 + 3x^2)$ 

①  $y = -2x^2 - 4x - 1$ 

 $y = -\frac{1}{2}x^2 + 1$ 

$$(3) y = -(2-x)(2+x) + 1$$
 해설 
$$y = ax^2 + bx + c$$
 의 그래프에서  $a$  의 값이 같으면 평행 이동하여

두 이차 함수의 그래프를 완전히 포갤 수 있다.

따라서 a = -2가 아닌 것은 ③.⑤이다.

6. 이차함수  $y = 2x^2 - 12x + 16$ 의 그래프에서 x의 값이 증가함에 따라 y의 값도 증가하는 x의 값의 범위는?

① 
$$x > 3$$
 ②  $x > 2$  ③  $x < 3$  ④  $x < 2$ 

$$y = 2x^{2} - 12x + 16$$

$$= 2(x^{2} - 6x + 9 - 9) + 16$$

$$= 2(x - 3)^{2} - 2$$
대칭축이  $x = 3$ 이고 아래로 볼록한 포물선이다.

7. 이차함수  $y = (x-1)^2 - 2$  의 그래프와 x 축에 대하여 대칭인 포물선의 식은?

① 
$$y = (x-1)^2 + 2$$
 ②  $y = (x+1)^2 + 2$   
③  $y = (x-1)^2 - 2$  ④  $y = -(x+1)^2 + 2$ 

$$y = -(x-1)^2 + 2$$

$$y$$
 대신에  $-y$  를 대입하면  $y = -(x-1)^2 + 2$  이다.

- 8. 이차함수  $y = (x+3)^2 9$  의 그래프에 대한 설명 중 옳지 <u>않은</u> 것은?
  - ① 꼭짓점의 좌표는 (-3, -9) 이다.
  - ② 대칭축은 x = -3 이다.
  - ③ 그래프는 아래로 볼록한 모양이다.
  - ④ *x* 축과 두 점에서 만난다.
  - ③ 제 1, 2, 3, 4 사분면을 모두 지난다.

해설

⑤ 제 4 사분면을 지나지 않는다.

**9.** 다음 이차함수를  $y = \frac{1}{3}(x-p)^2 - 5$ 로 나타낼 수 있다. 이 때, 꼭짓점이 (p, -5) 라고 할 때, apq의 값은?

$$y = ax^2 + 6x + q$$

① 
$$-45$$
 ②  $-54$  ③  $-66$  ④  $-76$  ⑤  $-80$    

$$y = \frac{1}{3}(x-p)^2 - 5$$

$$= \frac{1}{3}(x^2 - 2px + p^2) - 5$$

$$= \frac{1}{3}x^2 - \frac{2px}{3} + \frac{p^2}{3} - 5$$
따라서  $a = \frac{1}{3}, -\frac{2}{3}$ 

$$p = 6, p = -9, q = 22$$
 이므로  $apq = -66$  이다.

**10.** 이차함수  $y = 2x^2 + 4x - 1$  의 그래프는  $y = 2x^2$  의 그래프를 x 축의 방향으로 p 만큼, y 축의 방향으로 q 만큼 평행이동한 것이다. 이때, p + q 의 값을 구하면?

① 
$$-1$$
 ②  $-2$  ③  $-3$  ④  $-4$  ⑤  $-5$ 

$$y = 2x^{2} + 4x - 1$$

$$= 2(x^{2} + 2x) - 1$$

$$= 2(x + 1)^{2} - 2 - 1$$

$$= 2(x + 1)^{2} - 3$$

$$y = 2x^{2} - 3$$

$$y = 2x^{2} - 3$$
만큼 평행이동한 것이므로
$$p = -1, q = -3$$

 $\therefore p + q = -4$ 

**11.** 이차함수  $y = 2x^2 - 3x + 1$  의 그래프와 y 축에 대하여 대칭인 그래프의 식을 구하면?

②  $y = 2x^2 - 3x + 1$ 

① 
$$y = -2x^2 + 3x + 1$$

해설

 $y = 2x^2 - 3x + 1 = 2\left(x - \frac{3}{4}\right)^2 - \frac{1}{8}$ 

12. 이차함수 
$$y = 2x^2 - 4x + 1$$
 의 그래프를  $x$  축의 방향으로  $-1$  만큼,  $y$  축의 방향으로  $3$  만큼 평행이동하면  $y = 2x^2 + mx + n$  의 그래프가된다. 이 때,  $m^2 + n^2$  의 값은?

$$y = 2x^{2} - 4x + 1 = 2(x - 1)^{2} - 1$$

$$y = 2(x - 1 + 1)^{2} - 1 + 3 = 2x^{2} + 2$$
∴  $m = 0, n = 2$ 
∴  $m^{2} + n^{2} = 0^{2} + 2^{2} = 4$ 

**13.** 이차함수  $y = 2x^2 - 12x + 10 + k$  의 그래프를 x 축의 방향으로 1 만큼, y 축의 방향으로 3 만큼 평행이동 시켰을 때, x 축과 만나지 않는 k 값의 범위가 k > a 이다. a 의 값은?

이차함수의 식을 정리하면 
$$y = 2(x^2 - 6x + 9) - 18 + 10 + k = 2(x - 3)^2 - 8 + k$$
 이므로 평행이동한 그래프의 식은  $y = 2(x - 4)^2 - 5 + k$  이다. 이 그래프가  $x$  축과 만나지 않으려면 최솟값  $-5 + k$  가  $0$  보다 커야 하므로  $k > 5$  따라서  $a = 5$  이다.

**14.** 이차함수  $y = \frac{1}{3}x^2 + ax + 3$  의 그래프가 (1,4)를 지난다고 한다. 이 때, x 의 값이 증가할 때 y 의 값은 감소하는 범위를 구하면?

① 
$$x > 1$$
 ②  $x > 2$  ③  $x < -1$  ④  $x > -2$  ⑤  $x < -3$ 

해설 
$$(1,4) 를 대입하면  $a = \frac{2}{3}$  이다.$$

$$a = \frac{2}{3}$$
를 대입하면

$$y = \frac{1}{3}x^2 + \frac{2}{3}x + 3$$
$$= \frac{1}{3}(x^2 + 2x) + 3$$

 $=\frac{1}{3}(x+1)^2+3-\frac{1}{3}$ 이므로

축의 방정식은 
$$x = -1$$
 이다.  
따라서  $x < -1$  일 때,  $x$  의 값이 증가하면  $y$  값은 감소한다.

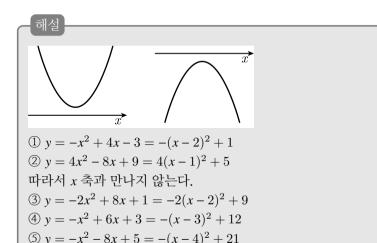
**15.** 이차함수  $y = 4x^2 + kx + 2$ 의 그래프의 꼭짓점이 y = x - 1의 그래프 위에 있고 x > a이면 y의 값이 증가하고, x < a이면 y의 값은 감소한 다. 이 때 꼭짓점의 좌표를 구하여라. (단, a < 0)

(3) (1,1)

따라서 (4a-3)(a+1)=0 이므로 a=-1(a<0) 이므로 꼭짓

 $4a^2 + a - 1$  이고  $4a^2 + a - 1 = 2$  이다.

점은 (-1, -2) 이다.


(-1, -2)

① (-1,-1)

## **16.** 다음 이차함수의 그래프 중 x 축과 만나지 않는 것은?

①  $y = -x^2 + 4x - 3$ 

 $9 \quad v = -2x^2 + 8x + 1$ 



# **17.** 다음 이차함수의 그래프가 x 축과 만나지 <u>않는</u> 것은?

① 
$$y = x^2 - 1$$

② 
$$y = x^2 - 2x - 3$$

 $y = x^2 - 2x$ 

$$y = x^2 + 4x + 4$$

$$y = x^2 - 4x + 5$$

해설 
$$y = ax^2 + bx + c$$
 와  $x$  축과의 교점의 개수  $b^2 - 4ac > 0$ : 2개

$$b^2 - 4ac < 0: 0$$
 가

 $b^2 - 4ac = 0:17$ 

⑤ 
$$(-4)^2 - 4 \times 5 = -4 < 0$$
  
따라서  $x$  축과 만나지 않는다.

**18.** 이차함수  $y = 2x^2 + 4x - k$  의 그래프가 x 축과 서로 다른 두 점에서 만나기 위한 상수 k 의 값의 범위는?

② k > -1

③ k < -2

4 k < -1

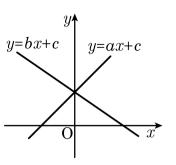
#### 해설

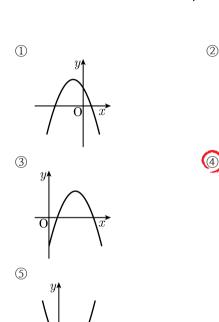
아래로 볼록한 포물선이 x 축과 서로 다른 두 점에서 만나기 위해서는 꼭짓점의 y 좌표가 음수이어야 한다.  $y=2x^2+4x-k=2(x^2+2x+1-1)-k=2(x+1)^2+(-2-k)$  꼭짓점 (-1,-2-k) 에서 -2-k<0  $\therefore k>-2$ 

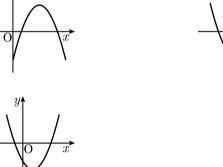
 $y = 2x^2 + 4x - k$  가 x 축과 서로 다른 두 점에서 만나면 방정식  $0 = 2x^2 + 4x - k$  이 서로 다른 두 근을 갖는다.

 $D = 4^2 + 8k > 0 \quad \therefore k > -2$ 

**19.** 이차함수  $y = -\frac{1}{2}(x-2)^2 + 6$  의 꼭짓점과 y 축과의 교점을 지나는 직선의 방정식을 구하면?

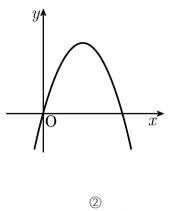

① 
$$y = 6x - 14$$
 ②  $y = 2x + 4$  ③  $y = 2x + 2$  ④  $y = x + 4$ 

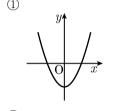

꼭짓점은 
$$(2, 6)$$
,  $x = 0$  일 때  $y = 4$  이므로  $y$  축과의 교점은  $(0, 4)$  두 점  $(2, 6)$ ,  $(0, 4)$ 를 지나는 직선의 기울기는  $\frac{6-4}{2-0} = 1$ ,

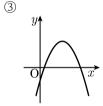

따라서 구하는 직선의 식은 y = x + 4

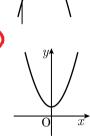
v 절편은 4

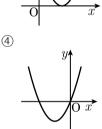
20. 두 일차함수 y = ax + c, y = bx + c 의 그래프가 다음과 같을 때, 이차함수  $y = ax^2 - bx - c$  의 그래프로 적당한 것은?



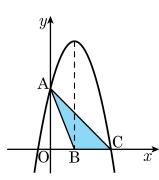


y = ax + c 에서 a > 0, c > 0y = bx + c 에서 b < 0, c > 0 이므로  $y = ax^2 - bx - c$  의 그래프는 a > 0 이므로 아래로 볼록한 모양이고 -b > 0 이므로 (축의 방정식) < 0 이고 -c < 0 이므로 y절편 < 0 이다. 따라서 적당한 그래프는 ④이다.


**21.**  $y = -x^2 + bx + c$  의 그래프가 다음 그림과 같을 때, 다음 중  $y = x^2 + cx + b$  의 그래프는?







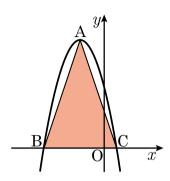





해설 주어진 그래프가 위로 볼록하고 축이 y 축의 오른쪽에 있으므로 b>0, y 절편이 0 이므로 c=0 이다. 따라서  $y=x^2+cx+b$ 

이고, c = 0 이므로  $y = x^2 + b$  이다.

**22.** 다음 그림은 이차함수  $y = -x^2 + 4x + 5$  의 그래프이다. 점 C, A 는 각각 x 축, y 축과 만나는 점이고, 점 B 는 대칭축과 x 축이 만나는 점이라고 할 때,  $\triangle$ ABC 의 넓이를 구하면?




① 6 ②  $\frac{15}{2}$  ③ 8 ④  $\frac{21}{2}$  ⑤ 12

$$y$$
 절편이  $5$  이므로  $A(0,5)$   
 $y = -x^2 + 4x + 5 = -(x - 2)^2 + 9$   
축이  $x = 2$  이므로  $B(2,0)$   
 $y = 0$  일 때  $x^2 - 4x - 5 = 0$   
 $(x - 5)(x + 1) = 0$  이므로  $C(5,0)$ 

(x-5)(x+1) = 0 이므로 C(5,0)  $\triangle ABC$  의 밑변  $\overline{BC} = 3$ , 높이  $\overline{AO} = 5$  $\therefore \triangle ABC = \frac{1}{2} \times 3 \times 5 = \frac{15}{2}$  **23.** 다음 그림은  $y = -x^2 - 4x + 5$  의 그래프를 나타낸 것이다. 꼭짓점의

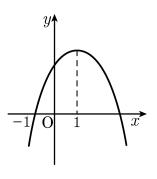
좌표를 A. x 축과 만나는 점을 B. C라 할 때.  $\triangle$ ABC의 넓이는?



③ 24 ① 30 (4) 21 (5) 18

해설 
$$y = -x^2 - 4x + 5$$

$$= -(x^2 + 4x + 4 - 4) + 5$$


$$= -(x + 2)^2 + 9$$
꼭짓점의 좌표는  $(-2, 9)$  이고
$$-x^2 - 4x + 5 = 0 \Rightarrow x^2 + 4x - 5 = 0$$
 $(x+5)(x-1) = 0 \Rightarrow x = -5$  또는  $x = 1$ 에서 B(-5, 0), C(1, 0) 이다.
따라서  $\triangle ABC = \frac{1}{2} \times 6 \times 9 = 27$  이다.

- **24.** 이차함수  $y = -x^2 + 6x 8$  의 그래프에 대한 다음 설명 중 옳은 것은?
  - ① 직선 x = -3을 축으로 한다.
  - ② 모든 x의 값에 대하여 y의 값의 범위는  $y \ge 1$ 이다.
  - ③ 꼭짓점의 좌표는 (-3, 1) 이다.
  - ④x > 3 일 때, x 의 값이 증가하면 y 의 값은 감소한다.
  - ⑤  $y = -x^2$  의 그래프를 x 축의 방향으로 -3 만큼, y 축의 방향으로 1 만큼 평행이동한 것이다.

### 해설

- $y = -(x-3)^2 + 1$ ① 축의 방정식 x = 3
- ②  $y \le 1$
- ③ 꼭짓점 (3, 1)
- ⑤ x 축의 방향으로 3 만큼 평행이동

**25.** 다음 그림은  $y = ax^2 + bx + c$  의 그래프이다. 다음 중 옳지 <u>않은</u> 것은?



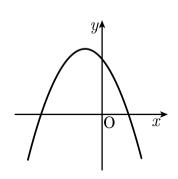
① ab < 0

 $\bigcirc bc > 0$ 

(3) ac > 0

4 abc < 0

해설


\_\_\_\_ 그래프가 위로 볼록하므로 *a* < 0

축이 y 축을 기준으로 오른쪽에 있으므로 a 와 b 의 부호는 반대이다. 따라서 b > 0 이다.

y 절편이 양수이므로 c > 0 이다.

⑤  $y = ax^2 + bx + c$  에서 x = 1 일 때 a + b + c = y 이고 y 좌표는 양수이므로 a + b + c > 0 이다.

**26.** 이차함수  $y = a(x - p)^2 + q$  의 그래프가 다음과 같을 때, a, p, q 의 부호는?



- ① a > 0, p > 0, q > 0
- ③ a > 0, p < 0, q < 0
- ⑤ a < 0, p > 0, q > 0

- ② a < 0, p < 0, q < 0
- $\bigcirc a < 0, \ p < 0, \ q > 0$

해설

위로 볼록한 모양의 포물선이고, 꼭짓점의 좌표는 제 2 사분면 위에 있으므로  $a<0,\ p<0,\ q>0$  이다.

**27.** 포물선 
$$f(x) = ax^2 + bx + 4$$
 는 점  $(-1, 4)$  를 지나고,  $g(x) = mx^2 + nx + p$  는 점  $(5, -2)$  를 지난다. 두 포물선이  $y$  축에 대하여 대칭일 때, 포물선  $g(x)$  의 꼭짓점의 좌표를 구하면?

① 
$$\left(\frac{1}{2}, \frac{61}{16}\right)$$
 ②  $\left(\frac{1}{2}, \frac{31}{8}\right)$  ③  $\left(\frac{1}{2}, \frac{63}{16}\right)$  ④  $\left(\frac{1}{2}, 4\right)$  ⑤  $\left(\frac{1}{2}, \frac{163}{40}\right)$ 

두 포물선 
$$f(x)$$
,  $g(x)$  가  $y$  축에 대하여 대칭이므로  $f(x)$  는 점  $(-1,4)$  와 점  $(-5,-2)$  를 지난다.  $f(x)=ax^2+bx+4$  에 두 점  $(-1,4),(-5,-2)$  를 대입하면  $a-b+4=4$  이므로  $a=b$  이다.  $25a-5b+4=-2$   $20a=-6$   $a=b=-\frac{3}{10}$   $f(x)=-\frac{3}{10}x^2-\frac{3}{10}x+4=-\frac{3}{10}\left(x+\frac{1}{2}\right)^2+\frac{163}{40}$  따라서  $f(x)$  의 꼭짓점의 좌표가  $\left(-\frac{1}{2},\frac{163}{40}\right)$  이므로  $g(x)$  의 꼭짓점의 좌표는  $\left(\frac{1}{2},\frac{163}{40}\right)$  이다.

## **28.** 다음 이차함수의 그래프 중 4 번째로 폭이 좁은 것은?

$$\bigcirc y = -(x-2)^2$$

$$3 y = \frac{1}{3}x^2 + \frac{1}{3}$$

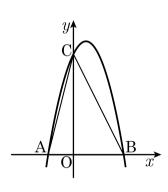
② 
$$y = \frac{2x(x-1)(x+1)}{x-1}$$

$$y = -\frac{5}{2}x^2$$

a 의 절댓값이 클수록 폭이 좁아진다.

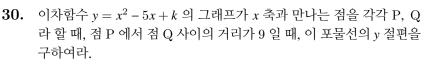
a 의 절댓값을 각각 구하면 ① 1

② 
$$\frac{2}{3}$$


 $3 \frac{1}{3}$ 

(4) 3

로 폭이 좁은 것은 ①이다.

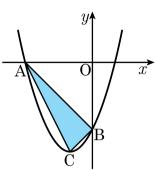

이므로 폭이 좁은 순서는 ④, ⑤, ②, ①, ③이다. 따라서 네 번째

**29.** 이차함수 *y* = -*x*<sup>2</sup> + 2*x* + 8 의 그래프가 다음 그림과 같을 때, ΔABC 의 넓이를 구하면?



① 20 ② 22 ③ 24 ④ 26 ⑤ 28

$$y = -x^2 + 2x + 8$$
의 C 의 좌표  $(0,8)$   
 $-x^2 + 2x + 8 = 0$ ,  $(x - 4)(x + 2) = 0$   
 $x = 4$  또는  $x = -2$   
 $A(-2,0)$ ,  $B(4,0)$  이므로  
 $\triangle ABC$ 의 넓이는  $\frac{1}{2} \times 6 \times 8 = 24$ 



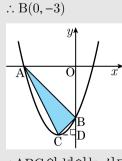

∴ 두 점은 (-2, 0), (7, 0)

두 근의 곱은  $k = (-2) \times 7 = -14$ 

**31.** 다음 그림과 같이  $y = x^2 + 2x - 3$  의 그래프가 x 축과 만나는 점을 A

, ν 축과 만나는 점을 B , 꼭짓점을 C 라 할 때, ΔABC 의 넓이는?




 $\frac{5}{2}$  $\frac{7}{2}$ ⑤ 4 ① 2

점 A 는 x 축과 만나는 점이므로 v = 0 일 때 x 값을 구한다.  $0 = (x+1)^2 - 4 \Leftrightarrow (x+1)^2 = 4$ 

$$x + 1 = \pm 2$$
,  $x = 1, -3$ 

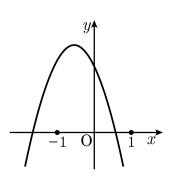
$$A$$
 의  $x$  좌표는 음수이다.

점 C는 꼭짓점의 좌표이므로  $y = (x+1)^2 - 4$ 에서 C(-1, -4)



ΔABC의 넓이는 사다리꼴 OACD 에서 ΔOAB 와 ΔBCD의 넓 이를 뺀 것과 같다.

$$\triangle ABC = \frac{1}{2} \left\{ (3+1) \times 4 - \frac{1}{2} \times 3 \times 3 - \frac{1}{2} \times 1 \times 1 \right\}$$


∴ 
$$\triangle$$
ABC = 3

- **32.** 다음 중 이차함수에 대한 설명이 옳지 <u>않는</u> 것은?
  - $y = x^2$ 에서 x > 0일 때, x값이 증가하면 y값도 증가한다.
  - $y = ax^2 + b(a \neq 0)$ 는 x = b를 축으로 하고 점 (0, b)를 꼭짓점으로 하는 포물선이다.
  - $y = ax^2$ 과  $y = -ax^2$ 의 그래프는 x축에 대하여 대칭이다.
  - $y = ax^2 + bx + c(a \neq 0)$ 에서 |a|의 값이 같으면 폭도 같다.
  - $y = ax^2$ 에서 a < 0일 때, a가 커지면 폭이 넓어진다.

#### 해설

- ① 아래로 볼록이므로 축의 오른쪽(축보다 큰 범위)에서 x 값이 증가하면 y 값도 증가한다.
- $x = 0(y^{\frac{1}{2}})$ 을 축으로 하고, (0, b)를 꼭짓점으로 한다.
- $y = ax^2$ 과  $y = -ax^2$ 의 그래프는 x축에 대하여 대칭이다.
- $y = ax^2 + bx + c(a \neq 0)$ 에서의 |a|의 값이 같으면 폭도 같다.
- $y = ax^2$ 에서 a < 0일 때 a가 커지면 |a|이 작아지므로 폭은 넓어진다.

**33.** 이차함수  $y = ax^2 + bx + c$  의 그래프가 다음과 같을 때, 다음 중 옳은 것을 구하면?



① a > 0

- 2b < 0
- ① a+b+c>0 ⑤ a-b+c<0

③ c < 0

- 위로 볼록하므로 a < 0</li>
   축이 y 축의 왼쪽에 있으므로 ab > 0
- 따라서 *b* < 0 이다.
- ③ y 절편이 양수이므로 c > 0
- ④ x = 1 일 때, y = a + b + c < 0
- ⑤ x = -1 일 때, y = a b + c > 0