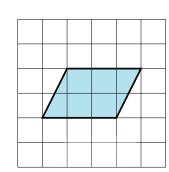
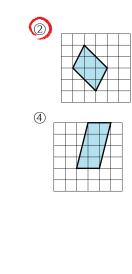

1. 다음 평행사변형의 넓이를 구하시오.


 $\underline{\mathrm{cm}^2}$

➢ 정답: 40 cm²

답:


(평행사변형의 넓이)=(밑변)× (높이)= 8 × 5 = 40(cm²)

2. 다음 중 아래 평행사변형과 넓이가 같은 것은 어느 것입니까?

3

1

주어진 평행사변형은 작은 사각형 6칸을 차지하고 있습니다.

3. 다음 평행사변형의 넓이를 구하시오.

 $\underline{\mathrm{cm}^2}$

▷ 정답: 144<u>cm²</u>

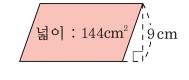
▶ 답:

(평행사변형의 넓이) = (밑변) × (높이) $18 \times 8 = 144 (\,\mathrm{cm}^2)$

4. 가로가 25cm , 세로가 20cm 인 직사각형 모양의 도화지가 있습니다. 이 도화지의 넓이는 몇 cm² 입니까?

 cm^2

➢ 정답: 500 cm²

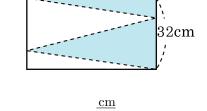

V 02: 000<u>011</u>

▶ 답:

해설

직사각형 모양의 도화지의 넓이는 (가로)× (세로)= $25 \times 20 = 500 ($ cm $^2)$

5. 높이가 $9 \, \mathrm{cm}$ 인 평행사변형의 밑변의 길이는 몇 cm 입니까?

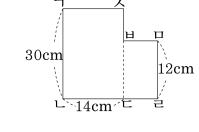

 $\underline{\mathrm{cm}}$

 답:

 ▷ 정답:
 16 cm

해설

(밑변)×9 = (144 cm²) 따라서, (밑변)= 144 ÷ 9 = 16(cm) 입니다. 6. 다음 그림에서 색칠한 부분의 넓이는 $960\,\mathrm{cm^2}$ 입니다. 직사각형의 가로는 몇 cm 인지 구하시오.


➢ 정답: 60cm

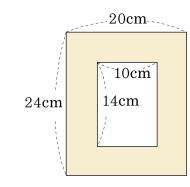
색칠한 부분의 넓이는 전체 넓이의 반입니다.

▶ 답:

 $960 \times 2 \div 32 = 60 \text{ (cm)}$

7. 다음 도형은 직사각형 2개를 붙여 놓은 것입니다. 도형 전체의 넓이가 $492\,\mathrm{cm}^2$ 일 때, 이 도형의 둘레의 길이를 구하시오.

 답:
 cm

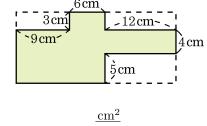

 ▷ 정답:
 100 cm

(직사각형 ㄷㄹㅁㅂ의 넓이)

= 492 - (14 × 30) = 492 - 420 = 72(cm²) (선분 ㄷㄹ의 길이)= 72 ÷ 12 = 6(cm) (선분 ㅂㅅ의 길이)+(선분 ㄹㅁ의 길이) =(선분 ㄱㄴ의 길이) (선분 ㄱㅅ의 길이)+(선분 ㅂㅁ의 길이) =(선분 ㄱㅅ의 길이))

(도형의 둘레)=(14+6+30) × 2 = 100(cm)

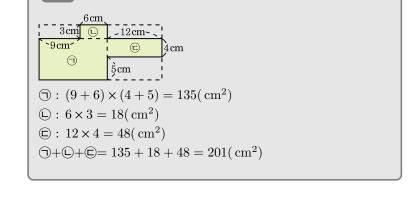
8. 다음 색칠한 부분의 넓이는 몇 cm^2 입니까?



- ① 140cm^2 $40cm^2$
- 200cm^2 3480cm^2
- $3 280 \text{cm}^2$

큰 직사각형의 넓이를 구한 후,

안쪽 작은 직사각형의 넓이를 구하여 뺍니다. 따라서, 색칠한 부분의 넓이는 $(20 \times 24) - (10 \times 14) = 480 - 140 = 340 (\,\mathrm{cm}^2)$ 입니다.


9. 도형의 색칠한 부분의 넓이를 구하시오.

 ► 답:
 cm²

 ▷ 정답:
 201 cm²

해설

 ${f 10.}$ 한 변의 길이가 $90{
m cm}$ 인 정사각형 모양의 색상지 6장을 $5{
m cm}$ 씩 겹쳐 놓고 풀칠하였다. 연결된 색상지의 넓이는 몇 ${
m cm}^2$ 인가?

답: cm^2 ▷ 정답: 46350 cm²

연결된 색상지의 가로 : $90 \times 6 - 5 \times 5 = 515 (cm)$ 세로 : 90(cm)

따라서, 넓이는 $515 \times 90 = 46350 (\mathrm{cm}^2)$

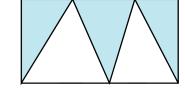
- **11.** 밑변이 $7\frac{1}{5}$ cm , 높이가 $4\frac{2}{3}$ cm 인 삼각형과 넓이가 같은 평행사변형이 있습니다. 이 평행사변형의 밑변이 $6\,\mathrm{cm}$ 라면 평행사변형의 높이를 구하는 식으로 알맞은 것은 어느 것입니까?
 - ① $7\frac{1}{5} \div 4\frac{2}{3} \div 2 \times 6$ ② $7\frac{1}{5} \times 4\frac{2}{3} \div 2 \times 6$ ③ $7\frac{1}{5} \div 4\frac{2}{3} \times 2 \div 6$ ④ $7\frac{1}{5} \times 4\frac{2}{3} \div 2 \div 6$ ⑤ $7\frac{1}{5} + 4\frac{2}{3} \div 2 6$

 $(평행사변형의 넓이) = (밑변) \times (높이) 에서$

(높이) = (평행사변형의 넓이) ÷ (밑변) 입니다. 이때, 삼각형의 넓이와 평행사변형의 넓이가 같으므로

(평행사변형의 높이)=(삼각형의 넓이) ÷ (밑변)

 $=7\frac{1}{5}\times4\frac{2}{3}\div2\div6$


- 12. 밑변이 $9\frac{4}{7}$ cm , 높이가 $3\frac{3}{5}$ cm 인 삼각형과 넓이가 같은 평행사변형이 있습니다. 이 평행사변형의 밑변이 $5\,\mathrm{cm}$ 라면 평행사변형의 높이를 구하는 식으로 알맞은 것은 어느 것입니까?
 - ① $9\frac{4}{7} \div 3\frac{3}{5} \div 2 \times 5$ ② $9\frac{4}{7} \times 3\frac{3}{5} \div 2 \times 5$ ③ $9\frac{4}{7} \div 3\frac{3}{5} \times 2 \div 5$ ③ $9\frac{4}{7} \times 3\frac{3}{5} \div 2 \div 5$ ⑤ $9\frac{4}{7} + 3\frac{3}{5} \div 2 5$

 $(평행사변형의 넓이) = (밑변) \times (높이) 에서$ (높이) = (평행사변형의 넓이) ÷ (밑변)입니다.

이때, 삼각형의 넓이와 평행사변형의 넓이가 같으므로 (평행사변형의 높이)=(삼각형의 넓이) ÷ (밑변)

 $=9\frac{4}{7} \times 3\frac{3}{5} \div 2 \div 5$

 ${f 13.}$ 직사각형의 넓이는 $150\,{
m cm^2}$ 입니다. 색칠한 부분의 넓이는 몇 ${
m cm^2}$ 입니까?

 $\underline{\mathrm{cm}^2}$ ▶ 답: ▷ 정답: 75 cm²

색칠한 부분의 넓이는 직사각형 넓이의 반입니다.

해설

따라서, $150 \div 2 = 75 \text{ cm}^2$ 입니다.