
1. 다음 그림과 같은 그래프가 나타내는 이차함수의 식은?

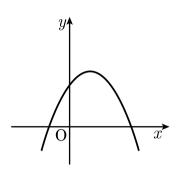
②
$$y = -x^2$$

③ $y = 3x^2$

$$y = ax^2$$
 에서 $(-1, -3)$ 을 지나므로 $-3 = a \times (-1)^2$, $a = -3$
 $\therefore y = -3x^2$

$$=-3x^2$$

다음 이차함수의 그래프 중에서 제 2 사분면을 지나지 않는 것은?


①
$$y = 2(x+1)^2 - 3$$
 ② $y = -\frac{1}{2}(x-3)^2 + 6$
③ $y = (x-4)^2 + 5$ ④ $y = -3(x-1)^2 + 2$

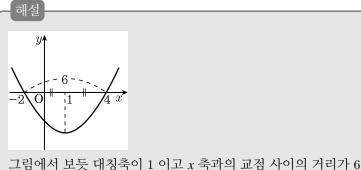
③
$$y = (x-4)^2 + 5$$

⑤ $y = \frac{3}{2}(x+2)^2 + 9$

④
$$y = -3(x-1)^2 + 2$$
 의 그래프는
꼭짐점이 (1-2) 이고 v 절편이 -1-9

(4) $y = -3(x-1)^2 + 2$ 의 그래프는 꼭짓점이 (1,2) 이고 y 절편이 -1 인 위로 볼록한 그래프이다. 따라서 제 1, 3, 4사분면을 지난다.

3. 이차함수 $f(x) = ax^2 + bx + c$ 의 그래프가 다음 그림과 같을 때, 다음 중 옳지 않은 것을 모두 고르면?

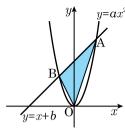

- $\textcircled{1}b^2 4ac < 0$
- abc < 0
- $x_1 < x_2 < 0$ 일 때, $f(x_1) < f(x_2)$

- x 축과의 교점이 두 개이므로 $D = b^2 4ac > 0$
- a < 0, b > 0, c > 0 이므로 abc < 0
- a < 0, c > 0 이므로 $-\frac{c}{a} > 0$
- x < 0 인 구간에서 x 값이 증가하면 y 값도 증가하는 그래프 이므로 $x_1 < x_2 < 0$ 이면 $f(x_1) < f(x_2)$
- f(-1) = a b + c 의 값은 양수도 될 수 있고 음수도 될 수 있다.

따라서 옳지 않은 것은 ①, ⑤이다.

- 이차함수 $y = \frac{1}{2}x^2 + ax + b$ 의 그래프는 x = 1 을 축으로 하고, x 축과 만나는 두 점 사이의 거리가 6 이라고 한다. a+b 의 값은?
- ② -3 ③ -1 ④ 3

(5) 5



이므로 x 절편은 -2, 4 이다.

$$y = \frac{1}{2}x^2 + ax + b = \frac{1}{2}(x+2)(x-4) = \frac{1}{2}x^2 - x - 4 : a = -1, b = -4$$

따라서 a+b=-5 이다.

5. 이차함수 $y = ax^2$ 의 그래프와 직선 y = x + b 가 점 A (3, 9) 과 점 B 에서 만날 때, \triangle ABO 의 넓이를 구하여라.

해설
$$y = ax^2$$
 에 점 $(3, 9)$ 을 대입, $9 = 9a$, $a = 1$ $\therefore y = x^2$

$$y = x + b$$
 에 점 $(3, 9)$ 을 대입, $9 = 3 + b$, $b = 6$ $\therefore y = x + 6$ $y = x^2$ 과 $y = x + 6$ 의 교점을 구하면 $x^2 = x + 6$

$$(x-3)(x+2) = 0$$

 $x = -2 \, \stackrel{\leftarrow}{\text{!!}} x = 3$

 $x^2 - x - 6 = 0$

$$\triangle$$
ABO 의 넓이는 $\frac{1}{2} \times 6 \times 9 - \frac{1}{2} \times 6 \times 4 = 15$ 이다.