1. $\log_2 6 - \log_2 \frac{3}{2}$ 의 값을 구하면?

① 0 ② -1 ③ 1 ④ -2 ⑤ 2

2. (log₃ 2)(log₄ 25) – log₉ 75 의 값은?

① $-\frac{1}{2}$ ② -1 ③ 0 ④ $\log_3 2$ ⑤ $\log_2 3$

3. $\log_{10} 2 = a$, $\log_{10} 3 = b$ 일 때, $\log_{10} 12 \stackrel{d}{=} a$, b로 나타내면?

① 2ab ② $a^2 + b$ ⑤ $a^2 + b$

② a^2b ③ a+2b 3 2a+b

4. $\sqrt[3]{2^a} = 4$, $\log_3 b = 1 - \log_3 \frac{1}{9}$ 일 때, ab의 값을 구하여라.

답: _____

5. $\log x = \bar{2}.6044$ 일 때, $\log x^2$ 의 값은?

① 2.3022 ④ 5.4890

② $\bar{3}.2088$ ③ $\bar{6}.5110$ ③ 4.5110

© 0.0110

6. 다음 식의 값 중 값이 다른 하나는?

① $9^{\log_9 4}$ ③ $\log_2 3 \log_3 5 \log_5 16$

 $\log_{\frac{1}{3}} 81$

 $4 \log_{\frac{1}{2}} \frac{1}{16}$

Ü

7. $\log_{\sqrt{2}} 9^{\log_3 8}$ 의 값을 구하여라.

▶ 답: _____

8. $\log_3 10$ 의 소수부분을 α 라 할 때, 3^{α} 의 값은?

① $\frac{1}{3}$ ② $\frac{10}{9}$ ③ $\frac{10}{3}$ ④ $\frac{100}{9}$ ⑤ $\frac{100}{3}$

- 9. $5^a = 2, 5^b = 3$ 이라 할 때, $\log_6 72$ 를 a와 b의 식으로 바르게 나타낸 것은?

 - ① $\frac{a+b}{a-b}$ ② $\frac{2a+b}{b-a}$ ② $\frac{3a+2b}{a+b}$
- $3 \frac{2a-b}{a+b}$

10. a, x, y가 양의 실수이고 $A = \log_a \frac{x^2}{y^3}, \ B = \log_a \frac{y^2}{x^3}$ 일 때, 3A + 2B와 같은 것은? (단, $a \neq 1$)

① $\log_a \frac{1}{x^5}$ ② $\log_a \frac{1}{y^5}$ ③ $\log_a \frac{1}{xy}$ ④ $\log_a \frac{x^5}{y^5}$ ⑤ $\log_a \frac{x^5}{y^7}$

11. $\log(31.4 \times A) = 1.0471$ 일 때, 양수 A의 값을 다음 상용로그표를 이용하여 구한 것은?

수	0	1	2	3	4	5
3.0	.4771	.4786	.4800	.4814	.4829	.4843
3.1	.4914	.4928	.4942	.4955	.4969	.4983
3.2	.5051	.5065	.5079	.5092	.5105	.5119
3.3	.5185	.5198	.5211	.5224	.5326	.5250
3.4	.5315	.5328	.5340	.5353	.5366	.5378
3.5	.5441	.5435	.5465	.5478	.5490	.5502

4 2.30

① 0.3020

⑤ 2.33

② 0.355

③ 1.35

 ${f 12}$. 첫째항이 2, 공차가 2인 등차수열을 $\{a_n\}$ 이라 할 때, 수열 $b_n=2^{a_n}$ 이다. 수열 $\{b_n\}$ 에서 처음으로 2000보다 커지는 항은? (단, $\log 2 = 0.3010$)

① 제5항 ② 제6항 ③ 제7항 ④ 제8항 ⑤ 제9항

- 13. 세 수 $3\log_3 3$, $\log_2 3$, $2\log_2 4$ 의 대소 관계를 바르게 나타낸 것은?
 - ① $2\log_2 4 < 3\log_3 3 < \log_2 3$ ② $\log_2 3 < 2\log_2 4 < 3\log_3 3$

14. 다음 두 조건을 만족하는 양수 x의 값을 모두 곱하면 10^k 이다. 이때, k의 값은?

· x는 세 자리 정수이다. $\cdot \log x^2$ 와 $\log^{\frac{1}{x}}$ 의 소수부분은 같다.

① 5 ② 6 ③ 7 ④ 8 ⑤ 9

15. $\log 2 = 0.3010$, $\log 3 = 0.4771$ 일 때, 3^4 는 몇 자리 정수인가?

① 2 ② 3 ③ 4 ④ 8 ⑤ 9

16. $\log x$ 의 정수 부분은 3이고, $\log x$, $\log \sqrt[3]{x}$ 의 소수 부분의 합은 1이라고 한다. $\log \sqrt{x}$ 의 정수 부분을 n, 소수 부분을 α 라 할 때 $n+8\alpha$ 의 값을 구하여라.

▶ 답: _____

17. 상용로그 $\log A$ 의 정수 부분과 소수 부분이 이차방정식 $2x^2 + 3x + k = 0$ 의 두 근이고, 상용로그 $\log B$ 의 정수 부분과 소수 부분이 이차방정식 $3x^2 - 4kx - 3 = 0$ 의 두 근일 때, $\frac{A}{B}$ 의 값은? (단, k는 상수)

① $10^{-\frac{5}{6}}$ ② $10^{-\frac{1}{6}}$ ③ $10^{\frac{5}{6}}$ ④ $10^{\frac{7}{6}}$ ⑤ $10^{\frac{11}{6}}$

18. $\frac{[\log 20010] + [\log 2.001]}{[\log 0.02001]}$ 의 값은? (단, [x]는 x를 넘지 않는 최대 정 수)

① -2 ② -1 ③ 1 ④ 2 ⑤ 3

19. $\log_{x-2}(-x^2+4x)$ 가 정의되기 위한 정수 x의 개수는?

① 1 ② 2 ③ 3 ④ 4 ⑤ 없다.

20. 다음은 2.3⁹ 의 값을 구하는 과정이다.

```
| log 2.3<sup>9</sup> = 9 log 2.3 = (句)
| log 1.8 = 0.2553 이므로
| log 2.3<sup>9</sup> = 3 + 0.2553
| = 3 + log 1.8
| = log(ⓒ)
| ∴ 2.3<sup>9</sup> = (ⓒ)
| 위의 과정에서 (句), (ⓒ)에 알맞은 수를 차례로 나열한 것은? (단,
```

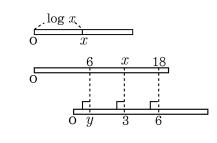
 $\log 1.8 = 0.2553, \ \log 2.3 = 0.3617)$ ① 3.2553, 1800 ② 3.2553, 180 ③ 4.2553, 2800

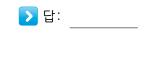
④ 4.52553, 280 ⑤ 5.2553, 18000

- **21.** $\log x$ 와 $\log \frac{10}{x}$ 의 정수 부분의 합과 소수 부분의 합을 순서대로 나열한 것은? (단, $\log x$ 의 소수 부분은 0 이 아니다.)
 - ① 1, -1 ② -1, 1 ③ 0, 1 ④ 1, 1 ⑤ 1, 0

22. 3^{20} 은 m자리의 정수이고, $\left(\frac{1}{3}\right)^{10}$ 은 소수 제 n 번째 자리에서 처음으로 0 아닌 숫자가 나타난다. m+n의 값을 구하여라. (단, $\log 3 = 0.4771$)

▶ 답: _____


23. 3^{30} 은 n자리 자연수이고 가장 큰 자리의 숫자가 a이다. 이때, n+a의 값을 구하여라. (단, $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4471$ 로 계산한다.)


▶ 답: _____

24. $\log x$ 의 정수 부분이 3이고, $\log x$ 의 소수 부분과 $\log \frac{1}{x}$ 의 소수 부분이 같을 때, x의 값은?(단, $\log x$ 의 소수 부분은 0이 아니다.)

① $10^{\frac{3}{2}}$ ② $10^{\frac{5}{2}}$ ③ $10^{\frac{10}{2}}$ ④ $10^{\frac{7}{2}}$ ⑤ $10^{\frac{11}{3}}$

25. 아래쪽 그림과 같이 점 O를 시점으로 하여 거리가 $\log x(x > 1)$ 가 되는 곳의 눈금을 x로 정한 자가 있다. 같은 종류의 두 개의 자의 눈금이 아래 그림과 같이 일치하였을 때, x - 2y의 값을 구하여라.

