방정식 |x − 1| = 2의 해를 모두 구하여라. > 답: > 답:

x에 대한 이차방정식  $(k^2-1)x^2-2(k-1)x+1=0$ 이 허근을 가질 때. k > m이다. m의 값을 구하여라.

≥ 답: \_\_\_\_\_

**3.** x에 대한 이차식  $2x^2 + (k+1)x + k - 1$ 이 완전제곱식이 될 때, k의 값을 구하여라.

**4.** x의 범위가  $0 \le x \le 3$  일 때, 이차함수  $y = -x^2 + 2x + 1$  의 최댓값을 M, 최솟값을 m 이라 한다. 이 때, M + m 의 값을 구하여라.

$$x^3 + 3x^2 - x - 3 =$$

다음 세 개의 3차방정식의 곳통근을 구하여라.

$$x^{3} + 3x^{2} - x - 3 = 0, \ x^{3} + 2x^{2} - x - 2 = 0,$$
$$x^{3} - 4x^{2} + 5x - 2 = 0$$

- $2x^4 x^3 + 2x^2 + a = x^2 + x + 1$ 로 나누어 떨어지도록 하는 상수 a의 값을 구하면?
- ① -3 ② 3 ③ -6 ④ 6 ⑤ 12

(x-1)(x+2)(x-3)(x+4)를 전개할 때, 각 항의 계수의 총합을 a, 상수항을 b라 할 때, a + b의 값을 구하면? ② 15 (3) 24 (4) 36

8.  $(1+2x-3x^2+4x^3-5x^4+6x^5+7x^6)^2$  의 전개식에서  $x^3$  의 계수는? ② 2 3 -24 (5) -4

9.  $(10^5 + 2)^3$ 의 각 자리의 숫자의 합을 구하여라. 2 18 4 26

**10.** (x-3)(x-1)(x+2)(x+4)+24 를 인수분해하면  $(x+a)(x+b)(x^2+cx+d)$ 이다. a+b+c-d의 값을 구하여라.

11. 
$$\frac{2002^3 - 1}{2002 \times 2003 + 1}$$
의 값을 구하면?  
① 1999 ② 2000 ③ 2001 ④ 2002 ⑤ 2003

의 값을 구하여라.

**12.**  $x^4 + 2x^2 + 9 = (x^2 + ax + b)(x^2 + cx + d)$ 로 인수분해될 때, |ab - cd|

> 답:

**13.** x에 대한 다항식  $(x^2-2x)^2+3(x^2-2x)-4$ 를 계수가 실수인 범위에서 인수분해 하였을 때, 모든 인수들의 합은?

(2)  $x^2 + 2$ 



(3)  $x^2 - 4x + 2\sqrt{2} - 4$  (4)  $x^2 + 4x + 2\sqrt{2}$ (5) 4x - 4

(1)  $x^2 - 2$ 

**14.**  $y = x^2 - (a^2 - 4a + 3)x + a^2 + 2$  와 y = x 의 두 교점이 원점에 관하여 대칭이다. 이 때, a 의 값을 구하면?

① 4 ② 2 ③ -4 ④ -2 ⑤ 3

**15.** 연립방정식  $\begin{cases} x^2 - xy - 2 = 0 \\ y^2 - xy - 1 = 0 \end{cases}$  의 해를  $x = \alpha$ ,  $y = \beta$ 라 할 때,  $\alpha^2 - \beta^2$ 의 값을 구하면?

① 
$$-1$$
 ② 0 ③  $\frac{1}{3}$  ④  $\frac{5}{3}$  ⑤ 1

**16.** 다항식 f(x)를  $x^2 - 3x + 2$ 로 나눌 때의 나머지가 3이고,  $x^2 - 4x + 3$ 으로 나눌 때의 나머지가 3x일 때, f(x)를  $x^2 - 5x + 6$ 으로 나눌 때의 나머지는?  $\bigcirc$  3 (2) 3x + 3(3) 3x - 34) 6x - 99x + 6

**17.** 
$$f(x) = \left(\frac{1-x}{1+x}\right)^{98}$$
일 때,  $f\left(\frac{1-i}{1+i}\right) + f\left(\frac{1+i}{1-i}\right)$ 의 값을 구하여라.

**18.** 두 실수 a,b에 대하여 복소수 z=a+bi와 켤레복소수  $\bar{z}=a-bi$ 의 곱  $z\bar{z} = 5$ 일 때,  $\frac{1}{2} \left( z + \frac{5}{z} \right)$ 를 간단히 하면?

① b ② 2b ③ 0 ④ 5a

(4)  $x^2 + 12x + 20 = 0$ 

③ 
$$x^2 - 12x + 20 = 0$$
  
⑤  $x^2 - 13x + 30 = 0$ 

**20.** x, y 가 실수일 때,  $2x^2 - 8x + y^2 + 2y + 6$  의 최솟값은?

(3) -1

(4) 1

(2) -3

**21.**  $yx^2 + yx + y = x^2 - x + 1$  을 만족하는 실수 x, y 에 대하여 y 의 최댓값과 최솟값의 곱은?

**22.** 삼차방정식  $x^3 - 2x^2 - 4x + k = 0$  의 세 근  $\alpha, \beta, \gamma$  에 대하여  $(\alpha + 1)$  $\beta$ ) $(\beta + \gamma)(\gamma + \alpha) = \alpha\beta\gamma$ 를 만족할 때, k의 값을 구하면?

 $\bigcirc$  5

**(4)** 4

(5) 3

- 방정식  $x^3 = 1$ 의 한 허근을 w라 하고  $z = \frac{\omega + 1}{2\omega + 1}$ 라 할 때,  $\overline{z}$ 의 값을 구하면?
  - (단, z는 z의 켤레복소수이다)

**24.** 연립방정식  $\begin{cases} ax + y + z = 1 \\ x + ay + z = 1 \end{cases}$  의 해에 대한 다음 보기의 설명 중 x + y + az = 1

옳은 것을 모두 고르면?

보기

I. 이 방정식은 a의 값에 관계없이 항상 해를 갖는다. I. a = -2 이면 이 방정식은 무수히 많은 해를 갖는다.

 $\coprod$ . 이 방정식이 무수히 많은 해를 가지는 a는 꼭 한 개 있다.

IV. 이 방정식이 유일한 해를 가지면, 그 해의 x,y,z 의 값은 모두 같다.

① II

② I, I

II, IV

④ I, II, IV

⑤ I, I, II, IV

| 25. | $x^4$ 을 $x + \frac{1}{2}$ 로 나누었을 때의 몫을 $q(x)$ , 나머지를 $r_1$ 이라 하고, $q(x)$ |
|-----|--------------------------------------------------------------------------|
|     | 를 $x + \frac{1}{2}$ 로 나누었을 때의 나머지를 $r_2$ 라 할 때, $r_2$ 의 값은?              |

| _ 1                  | <u> </u>          | <u> </u>      | $_{\odot}$ 1  | <sub>@</sub> 1 |  |
|----------------------|-------------------|---------------|---------------|----------------|--|
| $(1)$ $-\frac{1}{6}$ | $2 - \frac{1}{2}$ | $\frac{1}{2}$ | $\frac{4}{4}$ | (5) =          |  |

x에 대한 다항식 f(x)를  $(x-3)^2$ 으로 나누면 나누어 떨어지고, x+3으로 나누면 4가 남는다고 한다. 이 때, f(x)를  $(x-3)^2(x+3)$ 으로 나눈 나머지는?

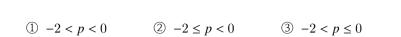
① 
$$(x-3)^2$$
 ②  $3x^2 + 2x - 5$  ③  $\frac{1}{5}(x-3)^2$ 

 $\bigcirc \frac{1}{9}(x-3)^2$ 4  $x^2 + 2x - 5$ 

**27.** 다음은 다항식  $x^{2n}+1+(x+1)^{2n}$ 이  $x^2+x+1$ 로 나누어떨어지지 않게 하는 자연수 n을 구하는 과정이다. ( )에 알맞은 수를 차례대로 나열한 것은?

ω가 다항식 
$$x^2 + x + 1 = 0$$
을 만족하는 근이라고 하면  $ω^2 + ω + 1 = 0$   
∴  $ω^3$ ,  $ω ≠ 1$   
(i)  $n = 3k(k = 0, 1, 2, \cdots)$  이면  
 $ω^{2n} + 1 + (ω + 1)^{2n} = ( ⑦ ) ≠ 0$   
(ii)  $n = 3k + 1(k = 0, 1, 2, \cdots)$  이면  
 $ω^{2n} + 1 + (ω + 1)^{2n} = ( ⑥ )$   
(iii)  $n = 3k + 2(k = 0, 1, 2, \cdots)$  이면  
 $ω^{2n} + 1 + (ω + 1)^{2n} = 0$   
따라서 (i), (ii), (iii) 에서 구하는  $n$  은 (ⓒ)이다.

(4) 3, 0, 3k  $\bigcirc$  2, 1, 3k


① 1,0,3k

② 2,1,3k+1

(3) 3, 0, 3k + 2

**28.**  $x^3 - 3x + 2 = 0$ 의 한 근이 a이고,  $x^2 - ax + 1 = 0$ 의 두 근이 b, c일 때,  $b^3 + c^3$ 의 값은 ?

x에 대한 방정식  $x^2 - 2px + p + 2 = 0$ 의 모든 근의 실수부가 음이 되도록 하는 실수 p의 값의 범위는?



 $4 -2 \le p \le 0$  $0 \le p < 2$