1. 사차방정식 x(x-1)(x+1)(x+2)-8=0 의 모든 해의 곱을 구하면?

① -8 ② -2 ③ 1 ④ 4 ⑤ 8

x(x-1)(x+1)(x+2) - 8 = 0 $\left\{x(x+1)\right\} \left\{(x-1)(x+2)\right\} - 8 = 0$ $(x^2+x)(x^2+x-2) - 8 = 0$ $x^2+x=t \ \text{라 하면, } t(t-2) - 8 = 0$ $\therefore \ t^2-2t-8=x^4+2x^3-x^2-2x-8=0$ 근과 계수와의 관계에 의해서, 근을 α , β , γ , δ 라 하면 \therefore 모든 해의 곱은 -8

전개했을 때의 상수항이므로 -8 (단, 다항식의 최고차항의 차수가 홀수일 때는 상수항의 부호를 반대로 바꾼것이 모든 해의 곱이다.)

근과 계수의 관계에서 모든 해의 곱을 나타내는 것은 다항식을

해설

- **2.** 사차방정식 $x^4 + 3x^2 10 = 0$ 의 모든 실근의 곱은?
 - $\bigcirc -2$ ② -1 ③ 0 ④ 1 ⑤ 2

해설

- $x^4 + 3x^2 10 = 0$ 에서 $x^2 = t$ 로 치환하면 $t^2 + 3t - 10 = 0, (t+5)(t-2) = 0$
- $\therefore t = -5 \, \, \underline{+} \, \underline{-} \, t = 2$
- $\therefore x = \pm \sqrt{5}i$ 또는 $x = \pm \sqrt{2}$ 따라서 모든 실근의 곱은
- $\sqrt{2} \times (-\sqrt{2}) = -2$

3. 연립방정식 $\begin{cases} \frac{x-1}{2} = \frac{2-y}{3} = \frac{z+3}{5} \\ x+2y+3z=7 \end{cases}$ 의 해를 구하여라.

▶ 답: ▶ 답:

▶ 답:

> 정답: y = -1

➢ 정답: x = 3

➢ 정답: z = 2

해설 $\frac{x-1}{2} = \frac{2-y}{3} \text{에서}$ $3x + 2y = 7 \cdot \cdots \cdot \text{①}$ $\frac{x-1}{2} = \frac{z+3}{5} \text{에서}$ $5x - 2z = 11 \cdot \cdots \cdot \text{①}$

 $x + 2y + 3z = 7 \quad \cdots \quad \bigcirc$

¬ □ 을 하면 2x - 3z = 0 ······ ©×3-@×2를 하면 11*x* = 33 $\therefore x = 3$ 이것을 \bigcirc , \bigcirc 에 대입하면

y = -1, z = 2

연립방정식 $\begin{cases} x+2y=5 & \cdots \\ 2y+3z=-2 & \cdots \\ 3z+x=-5 & \cdots \end{cases}$ 를 풀면 $x=\alpha,y=\beta,z=\gamma$ 4. 이다.

이때, $\alpha\beta\gamma$ 의 값을 구하여라.

▶ 답: ▷ 정답: -4

해설

주어진 세 식을 변변끼리 더하면 2(x+2y+3z) = -2, = x + 2y + 3z = -1

② - ⑥을 하면 x = 1 ② - ⑤을 하면 y = 2

② - ①을 하면 z = -2 $\therefore \alpha\beta\gamma = xyz = -4$

연립방정식 $\begin{cases} x-2y=1\\ xy-y^2=6 \end{cases}$ 의 해를 구하면 $x=p,\ y=q$ 또는 x=r, y = s이다. p + q + r + s의 값을 구하여라.

▶ 답:

▷ 정답: -1

 $\begin{cases} x - 2y = 1 & \cdots \bigcirc \\ xy - y^2 = 6 & \cdots \bigcirc \end{cases}$ ©을 ©에 대입하여 정리하면 $y^2 + y - 6 = 0(y - 2)(y + 3) = 0$ $\therefore y = 2, -3$ $y=2,\;y=-3$ 을 \bigcirc 에 대입하면 각각 x = 5, x = -5

- **6.** 부등식 $|x+1|+|x-1| \ge 4$ 의 해는 $x \le a$ 또는 $x \ge b$ 이다. a+b의 값은?
 - ① -2 ② -1 ③ 0 ④ 1 ⑤ 2

(i) x < -1

- $-(x+1) (x-1) \ge 4, \ x \le -2$ (ii) $-1 \le x < 1$
- $x + 1 (x 1) \ge 4$
 - 2 ≥ 4 (성립 안함)
- (iii) $x \ge 1$
- $x + 1 + x 1 \ge 4$
 - $x \ge 2$
- (i), (iii)을 합하면 $x \le -2$ 또는 $x \ge 2$
- $\therefore a+b=0$

7. 부등식 |2x-a| > 7의 해가 x < -1 또는 x > b일 때, 상수 a, b의 합을 구하여라.

▶ 답:

▷ 정답: 11

해설

|2x - a| > 7에서 2x - a < -7 또는 2x - a > 7 $\therefore x < \frac{a - 7}{2}$ 또는 $x > \frac{a + 7}{2}$ 그런데 주어진 부등식의 해가 x < -1 또는 x > b이므로 $\frac{a - 7}{2} = -1$, $\frac{a + 7}{2} = b$ $\therefore a = 5, b = 6$ $\therefore a + b = 11$ 8. 연립부등식 $\begin{cases} x^2 + 3x - 4 < 0 \\ (x - a)(x + 2) > 0 \end{cases}$ 의 해가 -2 < x < 1이 될 때, 실수 a의 최댓값은?

- 해설
- ① 0 ② -2 ③ -4 ④ -6 ⑤ -8

-4 < x < 1이므로 연립부등식의 해가 -2 < x < 1가 되려면

(x-a)(x+2) > 0의 해는

x < a, x > -2이고, $a \le -4$ 이다.

 $x^2 + 3x - 4 < 0$ 의 해가

9. 방정식 $(x^2 + x + 2)^2 + 8 = 12(x^2 + x)$ 의 모든 근의 합은?

① 1 ② 0 ③ -1 ④ -2 ⑤ -

 $x^2 + x = Y$ 라하면, $(Y+2)^2 + 8 = 12Y$ $Y^2 - 8Y + 12 = 0$, (Y-2)(Y-6) = 0

Y = 2 또는 Y = 6

Y = 2 生는 Y = 6 (i) Y = 2

(1) Y = 2 $x^2 + x - 2 = 0 \implies x = -2 \stackrel{\leftarrow}{} \stackrel{\leftarrow}{} = 1$

(ii) Y = 6

x²+x-6=0 ⇒ x=-3 또는 x=2 ∴ 모든 근의 합=-2

- **10.** 삼차방정식 $x^3+x^2+2x-3=0$ 의 세 근 α , β , γ 에 대하여 $\alpha+\beta+\gamma$, $\alpha \beta + \beta \gamma + \gamma \alpha$, $\alpha \beta \gamma$ 를 세 근으로 갖는 삼차방정식이 $x^3 + ax^2 + bx + c = 0$ 일 때, a - 2b + c의 값은?
 - ① -3 ② -2 ③ -1 ④ ①

- ⑤ 1

해설 $x^3+x^2+2x-3=0$ 의 세 근이 $lpha,\ eta,\ \gamma$ 라 하면

 $\alpha+\beta+\gamma=-1$, $\alpha\beta+\beta\gamma+\gamma\alpha=2$, $\alpha\beta\gamma=3$ 구하려는 방정식의 세 근의 합 -1 + 2 + 3 = 4 : a = -4 $(-1) \times 2 + 2 \times 3 + (-1) \times 3 = -2 + 6 - 3 = 1$: b = 1

세 근의 곱 $(-1) \times 2 \times 3 = -6$ $\therefore c = 6$

 $\therefore a - 2b + c = -4 - 2 + 6 = 0$

11. 삼차방정식 $2x^3 + px^2 + qx - 5 = 0$ 의 한 근이 1 - 2i 일 때 p + q 의 값은?(단, p, q 는 실수)

①7 ② -7 ③ 6 ④ -6 ⑤ 11

한 근이 1-2i이므로 다른 두 근을 $1+2i, \alpha$ 라 하면 세 근의 곱: $(1 - 2i)(1 + 2i)\alpha = \frac{5}{2}$

 $\therefore \ \alpha = \frac{1}{2}$

세 근의 합: $-\frac{p}{2} = (1-2i) + (1+2i) + \frac{1}{2} = \frac{5}{2}$

두근끼리 곱의 합 : $\frac{q}{2}=(1-2i)(1+2i)+(1-2i+1+2i)\cdot\frac{1}{2}=6$

 $\therefore q = 12$ $\therefore p+q=7$

한 근이 1-2i 이므로 다른 한 근은 1+2i

근과 계수의 관계에서 $x^2 - 2x + 5 = 0$ 나머지 일차식을 2x + a 라고 하면

 $2x^3 + px^2 + qx - 5 = (2x + a)(x^2 - 2x + 5)$ 에서 a = -1 이므로 대입하여 정리하면

 $p = -5, \ q = 12$

 $\therefore p+q=7$

문항수는?

① 6 ② 8 ③ 10 ④ 12 ⑤ 18

철수의 답안지에서 정답인 문항수를 x, 오답인 문항수를 y, 무응답인 문항수를 z라 하자. 총 문항수가 30이므로 x+y+z=30 ······ \bigcirc 채점기준 (1)에 의한 점수는

채점기준 (1)에 의한 점수는 5x - 2y + z = 84 ······ⓒ

채점기준 (2)에 의한 점수는 4x - y = 66 ······ⓒ

① - ①에서 4x - 3y = 54 ····· ⓐ ⓒ - ②에서 2y = 12

해설

 $\therefore y = 6$

y = 6을 ©에 대입하면 x = 18이것을 \bigcirc 에 대입하면 z = 6

마라서 무응답인 문항수는 6

13. 0이 아닌 실수 x, y 가 $(x^2+1)(y^2+4a^2)$ -8axy=0을 만족할 때, x에 관한 이 방정식은 실수 a에 관계없이 일정한 근을 갖는다. 그 근을 모두 구하여라. $(a \neq 0)$

▶ 답:

▶ 답:

▷ 정답: 1

▷ 정답: -1

해설

 $(x^2y^2 - 4axy + 4a^2) + (y^2 - 4axy + 4a^2x^2) = 0$ $(xy - 2a)^2 + (y - 2ax)^2 = 0$

 $(xy - 2a)^2 + (y - 2ax)^2 = 0$ xy - 2a, y - 2ax는 실수이므로

xy - 2a = 0, y - 2ax = 0 xy = 2a, y = 2ax

두 식을 연립하면, $2ax^2 = 2a$

 $(a \neq 0)$ 이므로 $x^2 = 1$, $x = \pm 1$

14. 다음 식을 만족하는 자연수의 순서쌍 (m, n)의 개수는?

$$\frac{4}{m} + \frac{2}{n} = 1$$

① 1

② 2

3

4

⑤ 5개 이상

(m-4)(n-2)=8

 $8 = 1 \times 8 = 2 \times 4 = 4 \times 2 = 8 \times 1$ 이므로 $(m,n)=(5,\ 10),\ (6,\ 6),\ (8,\ 4),\ (12,\ 3)$

∴ 4쌍의 (m, n)이 존재한다.

15. 모든 실수 x 에 대하여 다항식 $(m+1)x^2 - 2(m-1)x + 3$ 의 값이 항상 2보다 크도록 하는 상수 m 의 범위가 a < m < b 일 때, a + b 의 값을 구하여라.

▶ 답: ➢ 정답: 3

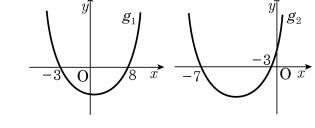
 $(m+1)x^2 - 2(m-1)x + 3 > 2$ $(m+1)x^2 - 2(m-1)x + 1 > 0$ 이므로

 $m \neq -1$, m > -1 이코, D < 0 이다. $\frac{D}{4} = m^2 - 3m < 0 \qquad \therefore \ 0 < m < 3$

 $\therefore a = 0, \ b = 3$

 $\therefore a + b = 3$

16. 이차함수 $y = x^2 + ax + b$ 를 갑은 일차항의 계수를 잘못 보고 그 래프 g_1 을, 을은 상수항을 잘못 보고 그래프 g_2 를 그렸다. 이 때, $x^2 + ax + b < 0$ 을 만족하는 정수 x 의 개수를 구하여라.



개 ▷ 정답: 13<u>개</u>

갑은 상수항을 바르게 보았으므로

▶ 답:

 g_1 의 상수항 b = -24 (∵ 두 근의 곱) 을은 일차항의 계수를 바르게 보았으므로 g_2 의 일차항 a=10(∵ 대칭축의 방정식은 $x = -\frac{a}{2} = -5$)

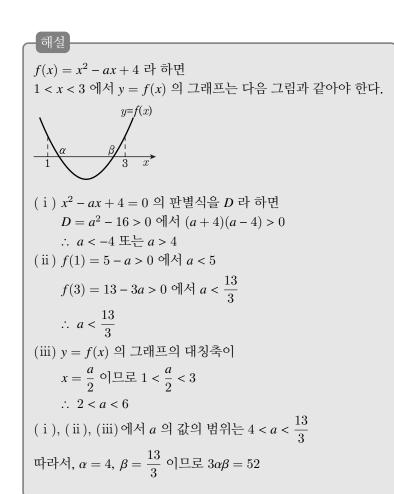
이 때, $x^2 + ax + b < 0$ 에 a, b 를 대입하면 $x^2 + 10x - 24 < 0$, (x + 12)(x - 2) < 0

∴ -12 < x < 2따라서 만족하는 정수는 13 (개)

17. 1 < x < 3 에서 x 에 대한 이차방정식 $x^2 - ax + 4 = 0$ 이 서로 다른 두 실근을 갖도록 하는 실수 a 의 값의 범위가 $\alpha < a < \beta$ 일 때, $3\alpha\beta$ 의 값을 구하여라.

답:

▷ 정답: 52



18. 삼차방정식 $x^3 + (2a+3)x^2 - (6a+5)x + (4a+1) = 0$ 이 중근을 가질 때, 상수 a의 값을 구하면?

① $a = 2, -4 \pm \sqrt{11}$ ② $a = -2, -2 \pm \sqrt{10}$ ③ $a = 3, -3 \pm \sqrt{5}$ ④ $a = 1, 4 \pm \sqrt{10}$ ⑤ $a = -1, -2 \pm 2\sqrt{2}$

, , ,

 $f(x) = x^3 + (2a+3)x^2 - (6a+5)x + 4a + 1$ 이라 하면 f(1) = 0이므로 f(x)는 (x-1)을 인수로 갖는다. 1 | 1 2a+3 -6a-5 4a+1 2a+4 -4a-1 1 1 2a+4 -4a-1 0 조립제법을 이용하여 좌변을 인수분해하면 $(x-1) \left\{ x^2 + 2(a+2)x - 4a - 1 \right\} = 0$ (i) $x^2 + 2(a+2)x - 4a - 1 = 0$ 이 $x \neq 1$ 인 경우 D = 0이므로, $a^2 + 8a + 5 = 0$ $\therefore \ a = -4 \pm \sqrt{11}$ (ii) $x^2 + 2(a+2)x - 4a - 1 = 0$ 이 x = 1을 근으로 갖는 경우 x = 1을 대입하면 1 + 2(a + 2) - 4a - 1 = 0 $\therefore a=2$ (i), (ii)에서 a=2, $-4\pm\sqrt{11}$

19. 다음 두 이차방정식

$$\begin{cases} x^2 + 4mx - (2m-1) = 0 \\ x^2 + mx + (m+1) = 0 \end{cases}$$
 이 단 하나의 공통근을 가질 때, m 의 값은 ?

 $\bigcirc 1$ 2 0 3 1 4 2 5 3

공통근을 α 라 하면

 $\alpha^2 + 4m\alpha - (2m - 1) = 0 \cdots \bigcirc$ $\alpha^2 + m\alpha + (m+1) = 0 \cdots \bigcirc$

-ⓒ하면 $3m\alpha - 3m = 0$

 $3m(\alpha-1)=0 \quad \therefore \ m=0, \ \alpha=1$ m=0일 때 두 방정식이 일치하므로

단 하나의 공통근이라는 조건에 부적합 $\alpha = 1$ 을 \bigcirc 에 대입

1 + m + m + 1 = 0 : m = -1

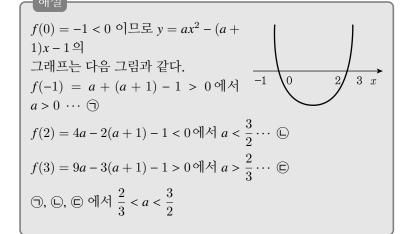
20. 아래 그림과 같이 한 변의 길이가 2 인 정사각형 ABCD 가 있다. 변 BC,CD 위에 각각 점 E,F 를 잡아 \triangle AEF 가 정삼각형이 되도록 할 때, BE의 길이를 구하면?

① $4 - 2\sqrt{3}$ ② $3 - \sqrt{3}$ ③ $3 - 2\sqrt{2}$ $4 \ 3 - \sqrt{2}$ $5 \ 2 - \sqrt{2}$

 $\overline{\mathrm{BE}} = \overline{\mathrm{DF}} = x, \ \overline{\mathrm{EC}} = \overline{\mathrm{FC}} = y$ 라 하면, x + y = 2 $\overline{\mathrm{AE}}$ 는 ($\Delta\mathrm{ABE}$ 가 직각삼각형이므로) $\overline{AE} = \sqrt{4+x^2}$ $\overline{\mathrm{EF}}$ 는 ($\Delta\mathrm{EFC}$ 가 직각이등변삼각형이므로) $\overline{\mathrm{EF}} = \sqrt{2}y$ △AEF 는 정삼각형이므로 $\overline{AE} = \overline{EF}$ $\Rightarrow \sqrt{4+x^2} = \sqrt{2}y \Leftrightarrow 4+x^2 = 2y^2$ $\begin{cases} x + y = 2\\ 4 + x^2 = 2y^2 \end{cases}$ 을 연립하여 풀면 $x = 4 - 2\sqrt{3}$

- **21.** 이차부등식 $ax^2 + (a^2 1)x + b > 0$ 의 해가 |x| < |a| 과 일치하도록 실수 a, b 의 값을 정할 때, a b 의 값은 ?
 - ① -1 ② -2 ③ 0 ④ 2 ⑤ 1

- . 이차방정식 $ax^2-(a+1)x-1=0$ 의 두 근을 α , β 라고 할 때, $-1<\alpha<0$, $2 < \beta < 3$ 이 성립하도록 상수 a 의 값의 범위를 구하면? (단, a > 0)
 - $\frac{2}{3} < a < 1$ ② $\frac{2}{3} < a < \frac{3}{2}$ ③ $\frac{3}{2} < a < 2$ ④ ③ $\frac{3}{2} < a < 2$



23. 세 실수 x, y, z가 $x + y + z = 2, x^2 + y^2 + z^2 = 6, x^3 + y^3 + z^3 = 8$ 을 만족할 때, -x - y + z의 값은?(단, $x \le y \le z$)

① 4 ② 3 ③ 2 ④ 1 ⑤ 0

해설

x + y + z = 2 ··· ① $x^2 + y^2 + z^2 = 6$ ··· ② $x^3 + y^3 + z^3 = 8$ ··· ②
①, ②에서 xy + yz + zx = -1 ··· ② $x^3 + y^3 + z^3 = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) + 3xyz = 8$ $\therefore xyz = -2 \cdots$ ②
①, ②, ③을 이용하여 x, y, z를 세 근으로 하는 삼차방정식을 만들면 $t^3 - 2t^2 - t + 2 = 0(t - 2)(t + 1)(t - 1) = 0$, t = -1, 1, 2 $x \le y \le z$ 이므로 x = -1 y = 1 z = 2 $\therefore -x - y + z = 2$

- **24.** $n \frac{1}{2} \le x < n + \frac{1}{2}$ (단, n은 정수) 인 실수 x에 대하여 $\{x\} = n$ 으로 나타낼 때, 방정식 $\left\{x^2-x-\frac{1}{2}\right\}=3x+1$ 의 근을 α , β 라 하자. 이 때, $9\alpha\beta$ 의 값을 구하면?
 - ②-13 ③ 15 ④ -15 ⑤ 17 ① 13

$$3x + 1$$
은 정수이므로
 $(3x + 1) - \frac{1}{2} \le x^2 - x - \frac{1}{2} < (3x + 1) + \frac{1}{2}$
 $\therefore 5 < x^2 - 4x + 4 < 6$

$$\therefore 5 \le x^2 - 4x + 4 < 6$$

 $\therefore 5 \le (x - 2)^2 < 6$
이때, $3x + 1$ 이 정수이므로 $3x$ 도 정수,

$$5 \le (x-2)^2 < 6$$
 이때 $3x + 10$ 저수이므로 $3x - 5$ 저수

$$3x = k(k$$
는 정수) 라 하면 $x = \frac{k}{3}$

$$x = 1 \ge \frac{\pi}{3},$$
13

$$k = 13 일 때 x = \frac{13}{3}$$

$$\therefore 9\alpha\beta = -13$$

25. x, y가 실수이고 $x^2 - 2xy + y^2 - 2x - 2y + 4 = 0$ 을 만족할 때, $\frac{y}{x}$ 의 최대값 M, 최소값 m의 합 M + m의 값은?

① $\frac{5}{2}$ ② $\frac{7}{2}$ ③ $\frac{9}{2}$ ④ $\frac{8}{3}$ ⑤ $\frac{10}{3}$

 $\frac{y}{x} = k$ 라 하자. y = kx이므로 $x^2 - 2xy + y^2 - 2x - 2y + 4 = 0$ 에서 $(k - 2k + 1)x^2 - (2 + 2k)x + 4 = 0$ x, y는 실수이므로, 판별식은 0보다 크거나 같다.

 $D' = (k+1)^2 - 4(k^2 - 2k + 1) \ge 0$

 $3k^2 + 10k - 3 \ge 0$

 $3k^2 - 10k + 3 \le 0$ $(k-3)(3k-1) \le 0$

 $\frac{1}{3} \le k \le 3$

 $\therefore m + M = \frac{1}{3} + 3 = \frac{10}{3}$