1. 다음 표의 수 중 근호를 사용하지 않고 나타낼 수 있는 수들을 찾아 색칠한 후 이 수들이 나타내는 수를 아래쪽에 색칠하였을 때 두 그림이 나타내는 수를 말하여라.

√ 0.4	1	$\sqrt{2}$	8	√	15	1	/0.01	√-	16
$\sqrt{18}$,	$\sqrt{1}$	3	$\sqrt{1}$	100		$\sqrt{25}$	√ <u></u>	16
$\sqrt{-0}$.	9	$\sqrt{0}$)	$\sqrt{1}$	120		$\sqrt{36}$	$\sqrt{2}$	20
$\sqrt{49}$)	\sqrt{g})	√	81		$\sqrt{64}$	$\sqrt{0}$.	08
$\sqrt{-30}$	6	$\sqrt{3}$	3	√.	- 9		$\sqrt{4}$		8
						_			
-5		6		3	0		25		

-10	-0.3	16	8	11
-1	7	9	0.1	-4
15	10	-10	-6	-13
-7	2	0.3	5	12

▷ 정답: 42

∨ 0⊟

▶ 답:

해설 $\sqrt{0.4}$ $\sqrt{28}$ $\sqrt{0.01}$ $\sqrt{15}$ $\sqrt{-16}$ $\sqrt{13}$ $\sqrt{100}$ $\sqrt{18}$ $\sqrt{25}$ $\sqrt{-16}$ $\sqrt{0}$ $\sqrt{-0.9}$ $\sqrt{120}$ $\sqrt{36}$ $\sqrt{20}$ $\sqrt{49}$ $\sqrt{9}$ $\sqrt{81}$ $\sqrt{64}$ $\sqrt{0.09}$ $\sqrt{-9}$ $\sqrt{-36}$ $\sqrt{3}$ $\sqrt{4}$ $\sqrt{8}$ -5 6 0 25 -10 -0.3 16 8 11 -1 0.1 -4 7 9 15 10 -10-6-13-7 2 0.3 5 12

 $\sqrt{125} + \sqrt{3} \left(\frac{\sqrt{5}}{\sqrt{3}} - \sqrt{15} \right) - \sqrt{75} = a\sqrt{3} + b\sqrt{5}$ 일 때, a + b 의 값을 2. 구하여라. (단, a, b는 유리수)

▶ 답:

> 정답: a+b=-2

 $\sqrt{125} + \sqrt{3} \left(\frac{\sqrt{5}}{\sqrt{3}} - \sqrt{15} \right) - \sqrt{75}$

 $= 5\sqrt{5} + \sqrt{5} - 3\sqrt{5} - 5\sqrt{3}$ $= -5\sqrt{3} + 3\sqrt{5}$ $\therefore a = -5, b = 3$

따라서 a+b=-5+3=-2 이다.

3. $\sqrt{12} - 3\sqrt{48} - \sqrt{3} + \sqrt{27} = A\sqrt{3}$ 일 때, 유리수 A 의 값은?

 $\sqrt{12} - 3\sqrt{48} - \sqrt{3} + \sqrt{27}$ $= 2\sqrt{3} - 12\sqrt{3} - \sqrt{3} + 3\sqrt{3}$ $= -8\sqrt{3}$

따라서 A = -8 이다.

- 4. $\left(3x \frac{1}{4}y\right)\left(5x + \frac{3}{4}y\right)$ 에서 xy의 계수는?
 - ① -1 ② 0 ③ 1 ④ 2 ⑤ 3

(준식) = $15x^2 + \left(\frac{9}{4} - \frac{5}{4}\right)xy - \frac{3}{16}y^2$ = $15x^2 + xy - \frac{3}{16}y^2$

- 5. 이차방정식 $(x-2)^2 = 4x-7$ 을 $ax^2 + bx + c = 0$ (a > 0, a,b,c는 상수)의 꼴로 나타낼 때, abc의 값을 구하여라.

▶ 답:

> 정답: abc = -88

 $(x-2)^2 = 4x-7$ 을 정리하면 $x^2 - 8x + 11 = 0$ 이므로 a = 1, b = -8, c = 11

 $\therefore abc = 1 \times (-8) \times 11 = -88$

- **6.** $x^2 + 6x 5 = 0$ 을 $(x + A)^2 = B$ 의 꼴로 나타낼 때, A + B 의 값을 구하여라.
 - ▶ 답:

▷ 정답: 17

해설

 $x^{2} + 6x - 5 = 0$, $x^{2} + 6x = 5$ $(x+3)^{2} = 5 + 9$, $(x+3)^{2} = 14$ A = 3, B = 14

 $\therefore A + B = 17$

7. $\sqrt{64} + \sqrt{(-7)^2}$ 을 계산하여라.

■ 답:

➢ 정답: 15

 $\sqrt{64} + \sqrt{(-7)^2} = \sqrt{64} + \sqrt{49} = 8 + 7 = 15$

8. 다음 중 계산 결과가 옳지 <u>않은</u> 것은?

- 9. 다음 식이 완전제곱식이 되도록 _____안에 알맞은 수를 넣을 때, 안의 수가 가장 큰 것은?
 - ① $x^2 12x + \square$ ② $4x^2 \square x + 25$ ③ $9x^2 + \square x + 1$ ④ $x^2 + 18x + \square$

해설

- $\boxed{3} \boxed{} = 2 \times 3 \times 1 = 6$ $\textcircled{4} \boxed{ } = \left(\frac{18}{2}\right)^2 = 81$
- $\boxed{\bigcirc} = 2 \times 10 = 20$

10. 다음 중
$$x^2 - \frac{1}{6}x - \frac{1}{6}$$
 과 $x^2 - x + \frac{1}{4}$ 의 공통인 인수가 되는 것은?

①
$$x + \frac{1}{2}$$
 ② $x - \frac{1}{2}$ ③ $x + 1$ ④ $x - 1$ ⑤ $x + \frac{1}{3}$

해설
$$x^{2} - \frac{1}{6}x - \frac{1}{6} = \left(x - \frac{1}{2}\right)\left(x + \frac{1}{3}\right)$$

$$x^{2} - x + \frac{1}{4} = \left(x - \frac{1}{2}\right)^{2}$$

- **11.** $x^2 9 + xy 3y$ 를 인수분해하면?
 - ① (x+3)(x+3+y)③ (x-3)(x-3-y)
- ② (x+3)(x+3-y)
- 4(x-3)(x+3+y)

(x+3)(x-3) + y(x-3) = (x-3)(x+3+y)

12. 다음 이차방정식 중 중근을 갖는 것은?

- ① $x^2 + 2x = 0$ ② $x^2 + \frac{1}{2}x + \frac{1}{8} = 0$ ② $9x^2 49y^2 = 0$
- $3 4x^2 + 15x + 9 = 0$

13. 자연수 1 부터 n 까지의 합을 구하는 식은 $\frac{n(n+1)}{2}$ 이다. 1 부터 n 까지의 합이 66 일 때, n 의 값을 구하여라.

답:

▷ 정답: 11

 $\frac{n(n+1)}{2} = 66 \,\text{에서}$ $n^2 + n - 132 = 0$ (n-11)(n+12) = 0 n = 11 또는 n = -12 n 은 자연수이므로 n = 11 이다.

14. 이차방정식 $(x-2)(x-1) - \frac{1}{3}(x^2+1) = 3(x-3)$ 의 근은?

①
$$x = \frac{9 \pm \sqrt{17}}{3}$$
 ② $x = \frac{9 \pm \sqrt{17}}{2}$ ③ $x = \frac{-9 \pm \sqrt{17}}{3}$ ④ $x = \frac{-9 \pm \sqrt{17}}{2}$

양 변에
$$3$$
을 곱하여 정리하면 $2x^2 - 18x + 32 = 0$ 이다. $x^2 - 9x + 16 = 0$ $9 + \sqrt{17}$

$$\therefore x = \frac{9 \pm \sqrt{17}}{2}$$

- 15. 다음 이차방정식 중에서 근의 개수가 다른 하나는?

 - ① $x^2 + 3x + 3 = 0$ ② $3x^2 + 2x 10 = 0$
 - $(x-2)^2 = 3$
 - ③ $3x^2 6x + 1 = 0$ ④ $x^2 + 2x 4 = 0$

① D = 9 - 12 < 0이므로 해가 없다.

나머지 모두 해의 갯수는 2개이다.

- 16. 과학탐구반 학생들이 70m 높이의 건물 꼭대기에서 물로켓을 쏘아올리는데 쏘아 올린 물로켓의 t 초 후의 높이가 (70+25t-5t²)m 라고할 때, 물로켓을 쏘아 올린 후 이 로켓의 높이가 40m 가 될 때는 쏘아올린지 몇 초 후인가?
 - ① 2초 ② 3초 ③ 4초 ④ 5초 ⑤ 6초

 $70 + 25t - 5t^2 = 40$ $t^2 - 5t - 6 = 0$

(t-6)(t+1) = 0

 $\therefore t = 6 \ (\bar{\mathcal{Z}})(\because t > 0)$

17. 어떤 정사각형의 가로의 길이를 4 cm 길게 하고, 세로의 길이를 6 cm 짧게 하여 직사각형을 만들었더니 그 넓이가 $39 \, \mathrm{cm}^2$ 가 되었다. 처음 정사각형의 넓이를 구하여라.

 답:
 cm²

 > 정답:
 81 cm²

정사각형의 한 변의 길이를 $x \operatorname{cm}$ 라고 하면, (x+4)(x-6)=39이므로

 $x^2 - 2x - 24 = 39$ $x^2 - 2x - 63 = 0$

(x+7)(x-9) = 0 x = 9 (∵ x > 6)따라서 처음 정사각형의 넓이는 $9 \times 9 = 81 (cm^2)$ 이다.

18. 다음 보기에서 옳지 <u>않은</u> 것을 모두 고르면?

- \bigcirc x 가 양수 a 의 제곱근이면, $a = \pm \sqrt{x}$ 이다.
- ① x 가 제곱근 9 이면 x = 3이다. ② 7.5 의 제곱근은 존재하지 않는다. ② $-\frac{7}{4}$ 의 제곱근은 $-\frac{\sqrt{7}}{2}$ 이다.

- $\textcircled{1} \ \textcircled{2} \ \textcircled{0}, \textcircled{0}$ 4 (h), (c), (c)
- ③つ, ©, ⊜

① x 가 양수 a 의 제곱근이면, $x = \pm \sqrt{a}$ 이다. ② 7.5 의 제곱근은 $\pm \sqrt{7.5}$ 이다.

- (2) $-\frac{7}{4}$ 은 음수이므로 제곱근은 존재하지 않는다.

19. 다음 수직선 위의 점 A,B,C,D에 대응하는 수는 $\sqrt{12}+2,3\sqrt{2}-4,4 2\sqrt{2},3+\sqrt{3}$ 이다. 점 A,B,C,D에 대응하는 수를 각각 a,b,c,d라 할 때, 다음 중 <u>틀린</u> 것은?

① $a+b=\sqrt{2}$ ② $c+d=3\sqrt{3}+5$

③ 3(a+b) > c+d ④ b-a > 0⑤ c - d < 0

해설

 $\sqrt{12} + 2 = 5. \times \times \times \leftarrow d$

 $3\sqrt{2} - 4 = 0. \times \times \times \leftarrow a$

 $4 - 2\sqrt{2} = 1. \times \times \times \leftarrow b$ $3 + \sqrt{3} = 4. \times \times \times \leftarrow c$

 $3 a + b = \sqrt{2} \rightarrow 3(a+b) = 3\sqrt{2}$

 $c+d=3\sqrt{3}+5$

 $\therefore 3(a+b) - (c+d) = 3\sqrt{2} - (3\sqrt{3} + 5)$ $= \sqrt{18} - \sqrt{27} - 5 < 0$

 $\therefore 3(a+b) < c+d$

- **20.** $7x 5 \le 4(x + 1)$ 이고 x는 자연수일 때, $x^2 5x + 6 = 0$ 를 풀면?
 - ① x = 0, x = 1 $4 \quad x = 3$ $5 \quad x = -2, \ x = 3$
- ② x = 2 ③ x = 2, x = 3

$7x - 5 \le 4(x+1)$ 에서 $7x - 4x \le 4 + 5$, $3x \le 9$ ∴ $x \le 3$

해설

따라서 x의 값은 1, 2이다. $x^2 - 5x + 6 = 0$ 의 해는 x = 2, x = 3이므로 해는 x = 2가 된다.