1. 다음 중 <u>틀린</u> 것은?

- ① 0 이 아닌 유리수는 항상 무한소수로 나타낼 수 있다.
- ② 유한소수로 나타낼 수 없는 분수는 모두 순환소수이다.
- ③ 무한소수는 분수로 고칠 수 없다.
- ④ 유한소수는 순환소수로 나타낼 수 있다.
- ⑤ 정수가 아닌 유리수는 유한소수나 순환소수로 나타낼 수 있다.

무한소수중 순환소수는 분수로 고칠 수 있다.

해설

2. 다음 순환소수를 분수로 고치는 식이 옳은 것은?

$$\begin{array}{c} \text{(1)} \ 0.75 = \frac{}{90} \\ \text{(2)} \ 0.43 = \frac{43}{} \end{array}$$

$$(5) \ \ 0.123 = \frac{1}{90}$$

①
$$0.\dot{7}\dot{5} = \frac{75 - 7}{90}$$
 ② $0.0\dot{3}\dot{7} = \frac{37}{999}$ ③ $1.\dot{4} = \frac{14 - 1}{9}$ ④ $0.4\dot{3} = \frac{43}{90}$ ⑤ $0.\dot{1}2\dot{3} = \frac{123}{900}$

②
$$0.0\dot{3}\dot{7} =$$

①
$$0.\dot{7}\dot{5} = \frac{75}{99}$$

② $0.0\dot{3}\dot{7} = \frac{37}{990}$
④ $0.4\dot{3} = \frac{43 - 4}{90}$
⑤ $0.\dot{1}2\dot{3} = \frac{123}{999}$

$$\textcircled{4} \ 0.4 \ 3 = \frac{43}{90}$$

$$(5) \ 0.123 = \frac{1}{99}$$

 $3. \qquad \left(\frac{xy^b}{x^ay^3}\right)^3 = \frac{y^9}{x^3} \text{ 에서 } a+b \text{ 의 값을 구하여라.}$

▶ 답:

▷ 정답: 8

$$\left(\frac{xy^b}{x^ay^3}\right)^3 = \frac{x^3y^{3b}}{x^{3a}y^9} = \frac{y^9}{x^3}$$

$$3a = 6 \qquad \therefore \quad a = 2$$

$$3b = 18 \qquad \therefore \quad b = 6$$

$$\therefore \quad a + b = 8$$

- **4.** $axy^2 \times (xy)^b = -3x^cy^5$ 일 때, a, b, c의 값은?
 - ① a = -1, b = -2, c = 3③ a = 4, b = -2, c = 3
- ② a = -3, b = -4, c = 3
- 4 a = 3, b = 3, c = 4

- 해설 arv² ×

 $axy^2 \times (xy)^b = -3x^cy^5$ $ax^{(1+b)}y^{(2+b)} = -3x^cy^5$ ○] 므로 a = -3, 1 + b = c, 2 + b = 5∴ a = -3, b = 3, c = 4

5.
$$(4x^3y)^2 \div (-2xy)^2 \div 4x^3y^2$$
 을 간단히 한 것은?

①
$$\frac{x}{y^2}$$
 ② $2xy^2$ ③ $-2x^2y$ ④ $2x^2y$

해설
$$(4x^3y)^2 \div (-2xy)^2 \div 4x^3y^2$$

$$= 16x^6y^2 \times \left(\frac{1}{4x^2y^2}\right) \times \left(\frac{1}{4x^3y^2}\right)$$

$$= \frac{x}{y^2}$$

6. 다음 식
$$\frac{2a^2b + 3ab^2}{ab} - \frac{4ab - 5b^2}{b}$$
 을 간단히 하면?

① -2a + 8b ② -2a - 8b ③ 6a - 8b ④ 6a - 2b ⑤ 2a + 8b

 $\frac{2a^2b + 3ab^2}{ab} - \frac{4ab - 5b^2}{b} = 2a + 3b - 4a + 5b = -2a + 8b$

- x = 3a 4b 7, y = -2a + b일 때, 다음 식 2x 3y + 4를 a, b에 관한 7. 식으로 옳게 나타낸 것은?

 - ① -5b 10 ② -11b 10
- 312a 11b 10

해설

 $\textcircled{4} \ 12a - 5b - 3 \qquad \textcircled{5} \ 12a - 7b - 3$

x = 3a - 4b - 7, y = -2a + b를 각각 대입하면

2(3a-4b-7)-3(-2a+b)+4= 6a + 6a - 8b - 3b - 14 + 4

= 12a - 11b - 10

8. 2x-y+3=3x-2y+5 임을 이용하여 x^2+xy-3 을 x 에 관한 식으로 나타내면?

- $\textcircled{9} 2x^2 + 2x 3 \qquad \qquad \textcircled{9} \ \ 2x^2 + 3x 3$
- ① 3x-3 ② x^2+x-3 ③ $2x^2+x-3$

2x - y + 3 = 3x - 2y + 5를 y 로 정리하면 y = x + 2이다.

주어진 식에 대입하면 $x^2 + x(x+2) - 3 = 2x^2 + 2x - 3$ 이다. 9. 다음은 분수를 소수로 바꾸는 과정이다. ⓒ에 들어갈 숫자로 옳은 것을 고르면?

 $\frac{3}{5^2} = \frac{3 \times \bigcirc}{5^2 \times \bigcirc} = \frac{\bigcirc}{100} = \bigcirc$

- ① 2 ② 2^2 ③ 8 ④ 12 ⑤ 0.12

해설

$$\begin{vmatrix} \frac{3}{5^2} = \frac{3 \times 2^2}{5^2 \times 2^2} = \frac{12}{100} = 0.12 \\ \therefore \bigcirc = 12 \end{vmatrix}$$

10. 분수 $\frac{27}{110}$ 의 순환마디를 x, $\frac{14}{3}$ 의 순환마디를 y 라 할 때 x-y 의 값을 구하여라.

▶ 답:

▷ 정답: 39

 $\frac{27}{110} = 0.2\dot{4}\dot{5}$ x = 45 $\frac{14}{3} = 4.\dot{6}$ y = 6 x - y = 39

11. $A = 2^{x-3}$, $B = 3^{x+1}$ 일 때, $\frac{8^x}{9^x} = A$, B에 관한 식으로 나타내면?

- ① $\frac{4606}{B^2}A^3$ ② $\frac{4607}{B^2}A^3$ ③ $\frac{4608}{B^2}A^3$ ③ $\frac{4609}{B^2}A^3$

12. $\frac{2x+y}{3} - \frac{x+3y}{2} = ax + by$ 일 때, 상수 a , b 의 합 a+b 의 값은?

① $-\frac{5}{3}$ ② -1 ③ $-\frac{1}{3}$ ④ 1 ⑤ $\frac{5}{3}$

$$\frac{2x+y}{3} - \frac{x+3y}{2} = \frac{2(2x+y) - 3(x+3y)}{4x + 2y - 3x - 9y} \therefore a = \frac{1}{6}, b = -\frac{7}{6}$$

$$= \frac{4x + 2y - 3x - 9y}{6}$$

$$= \frac{x - 7y}{6}$$

$$= \frac{1}{6}x - \frac{7}{6}y$$

$$\therefore a + b = \frac{1}{6} + \left(-\frac{7}{6}\right) = -1$$

$$= \frac{x + 2y - 5x - 5y}{6}$$

$$= \frac{x - 7y}{6}$$

$$= \frac{1}{-x} - \frac{7}{-y}$$

- 13. 식 $(a^2 2a + 4) (-3a^2 5a + 1)$ 을 간단히 하였을 때, a 의 계수와 상수항의 곱은?
- ① 21 ② 15 ③ 9 ④ -15 ⑤ -21

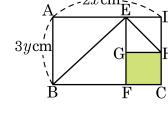
해설

 $a^2 - 2a + 4 + 3a^2 + 5a - 1$ $=4a^2+3a+3$

a의 계수는 3, 상수항은 3

 $\therefore \ 3 \times 3 = 9$

- **14.** 어떤 다항식 A 에서 $x^2 + 3x 5$ 를 빼어야 할 것을 잘못하여 더하였더니 $-2x^2 - 4x + 3$ 이 되었다. 이 때, 어떤 다항식 A 는?


 - ① $-3x^2 7x + 8$ ② $-3x^2 x 2$ ③ $-x^2 + x 3$

해설

 $A = (-2x^2 - 4x + 3) - (x^2 + 3x - 5)$

$$= -2x^{2} - 4x + 3 - x^{2} - 3x + 5$$
$$= -3x^{2} - 7x + 8$$

- **15.** 다음 그림과 같이 가로의 길이가 2xcm, 세로의 길이가 3ycm 인 직사 각형 ABCD 모양의 종이를 접어 정사각형 ABFE 와 정사각형 EGHD 를 잘라내었을 때, 남은 종이의 넓이를 x, y 의 식으로 바르게 나타낸 것은?

- $3 4x^2 18xy 18y^2$
- ① $4x^2 + 18xy + 18y^2$ ② $4x^2 18xy + 18y^2$ $4x^2 - 18xy + 18y^2$
- \bigcirc $-4x^2 + 18xy 18y^2$

$\overline{\mathrm{ED}}$ 의 길이는 2x – 3y 이다. $\square\mathrm{EGHD}$ 가 정사각형이므로 $\overline{\mathrm{EG}}$

해설

의 길이도 2x-3y 이다. 따라서 $\overline{\mathrm{GF}}$ 의 길이는 3y-(2x-3y)=-2x + 6y 이다. 그러므로 색칠한 부분의 넓이는 $(2x - 3y)(-2x + 6y) = -4x^2 +$

18xy - 18y² 이 된다.

16. (3x - 2y + z)(5x + 2y - z)의 전개식에서 xy, yz, zx 각각의 계수의 합은?

1 2

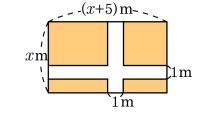
② 10 ③ 21 ④ 33 ⑤ 40

(3x - 2y + z)(5x + 2y - z)

해설

 $= \{3x - (2y - z)\}\{5x + (2y - z)\}\$ 2y - z = A로 치환하면

(3x - A)(5x + A)


 $= 15x^2 - 2xA - A^2$

A = 2y - z를 대입하면

 $15x^2 - 2x(2y - z) - (2y - z)^2$ $= 15x^2 - 4xy + 2xz - 4y^2 + 4yz - z^2$

 $\therefore xy$, yz , zx 각각의 계수의 합 : -4+4+2=2

17. 다음 그림은 직사각형 모양으로 생긴 꽃밭에 폭이 1m 인 길을 만든 것이다. 길을 내고 난 꽃밭의 넓이를 x를 사용하여 나타내면?

- ① $2x^2 + x + 1$ ② 5x + 8 ③ $x^2 3x 4$

 $(x+4)(x-1) = x^2 + 3x - 4$

18. 분수 $\frac{21}{2^3 \times x \times 5}$ 을 소수로 나타내면 순환소수가 된다고 한다. 2,3,4,5,6,7,8,9 중 x 가 될 수 있는 것을 구하여라.

▶ 답: ➢ 정답: 9

x 가 2 , 4 , 8 , 5 이면 유한소수 x 가 3 이면 $\frac{7}{2^3 \times 5}$, 7 이면 $\frac{3}{2^3 \times 5}$ 가 되어 유한소수 x 가 6 이면 $\frac{3 \times 7}{2^3 \times 2 \times 3 \times 5} = \frac{7}{2^3 \times 2 \times 5}$ 로 유한소수 순환소수가 되려면 x = 9

- 19. 순환소수 6.2에 어떤 자연수를 곱하면 그 결과가 자연수가 된다. 이를 만족하는 두 자리의 자연수의 개수를 구하여라.
 - ▶ 답: 개

▷ 정답: 10 <u>개</u>

 $6.\dot{2} = \frac{62-6}{9} = \frac{56}{9}$ 이므로 어떤 자연수는 9의 배수이어야 한다. 두 자리의 자연수 중 9의 배수는 18, 27, ..., 99의 10개이다.

20. 다음에서 x + y + z 의 값을 구하면?

- $(a^2)^3 \times (a^3)^x = a^{18}$ • $\left(\frac{a^4}{b^2}\right)^3 = \frac{a^y}{b^6}$ • $(a^2b)^z \div a^2 = a^4b^3$
- ① 15 ② 16 ③ 17 ④ 18 ⑤ 19
- $(a^{2})^{3} \times (a^{3})^{x} = a^{18}$ $a^{6} \times a^{3x} = a^{18}$ $6 + 3x = 18 \qquad \therefore x = 4$ $\left(\frac{a^{4}}{b^{2}}\right)^{3} = \frac{a^{y}}{b^{6}}$ $\frac{a^{12}}{b^{6}} = \frac{a^{y}}{b^{6}} \qquad \therefore y = 12$ $(a^{2}b)^{z} \div a^{2} = a^{4}b^{3}$ $a^{2z}b^{z} \div a^{2} = a^{4}b^{3} \qquad \therefore z = 3$ $\therefore x + y + z = 4 + 12 + 3 = 19$

21. $2^{17} \times 5^{20}$ 은 n자리의 자연수이고, 3^{2008} 의 일의 자리의 숫자는 m일 때, n+m 의 값을 구하여라.

답:▷ 정답: 21

V 02. 2

 $2^{17} \times 5^{20} = (2^{17} \times 5^{17}) \times 5^3 = 125 \times 10^{17}$ $\therefore n = 20$

3^m 의 일의 자리의 수는 3, 9, 7, 1 로 반복되고 2008 = 4 × 502 이므로 m = 1

 $\therefore n+m=21$

22. $\frac{(x^2y)^3}{(xy^2)^m} = \frac{x^n}{y^3}$ 을 만족하는 m, n 에 대하여 다음 식의 값을 구하여라.

$$(-8m^2n^3)^2 \div 16m^3n^2 \div (-n)^3$$

답:> 정답: -36

 $\frac{(x^2y)^3}{(xy^2)^m} = \frac{x^n}{y^3}$ $\frac{(x^2y)^3}{(xy^2)^m} = \frac{x^6y^3}{x^my^{2m}} = x^{6-m} \times y^{3-2m}$ $6 - m = n, \ 3 - 2m = -3$ $-2m = -6, \ \therefore m = 3$ $n = 6 - 3 = 3, \ \therefore n = 3$ $(-8m^2n^3)^2 \div 16m^3n^2 \div (-n)^3 = 64m^4n^6 \div 16m^3n^2 \div (-n)^3 = -4mn$ $m = 3, \ n = 3 \ \circ \square = \exists, \ -4mn = -4 \times 3 \times 3 = -36$

23. $\frac{4}{27}$ 를 소수로 나타내었을 때, x_n 은 소수점 아래 n 번째 수를 나타낸다. 다음 값을 구하여라.

 $x_1 + x_3 + x_5 + x_7 + x_9 + \cdots + x_{41}$

답:▷ 정답: 91

- **24.** $\frac{1}{7}$ 은 순환소수이다. 소수점아래 10, 20, 30 번째 자리의 숫자를 각각 $a,\ b,\ c$ 라 할 때, $a+0.1\times b+0.01\times c$ 가 나타내는 수는?
 - ① 4.12 ② 5.21 ③ 2.15 ④ 8.24 ⑤ 8.47

해설 $\frac{1}{7}=0.\dot{1}4285\dot{7}$ 로 순환마디는 6 자리이므로

10÷6=1···4 이므로 a=8같은 방법으로 $20\div 6=3\cdots 2,\ 30\div 6=5\cdots 0$ 이므로 b=

4, c = 7따라서 $a + 0.1 \times b + 0.01 \times c = 8 + 0.4 + 0.07 = 8.47$ 이다.

25. $\frac{y}{x} + \frac{x}{y} + \frac{z}{y} + \frac{y}{z} + \frac{x}{z} + \frac{z}{x} + 3 = 0$ 일 때, xy + yz + zx 의 값을 구하여라. (단, x + y + z = 0)

답:

▷ 정답: 0

해설 $\frac{y}{x} + \frac{x}{y} + \frac{z}{y} + \frac{y}{z} + \frac{x}{z} + \frac{z}{x} + 3 = 0 \text{ 에서}$ $\left(\frac{y}{x} + \frac{z}{x} + 1\right) + \left(\frac{z}{y} + \frac{x}{y} + 1\right) + \left(\frac{x}{z} + \frac{y}{z} + 1\right) = 0$ $\frac{x + y + z}{x} + \frac{x + y + z}{y} + \frac{x + y + z}{z} = 0$ $(x + y + z) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = 0$ $x + y + z \neq 0 \text{ 이 므로 } \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$ $\frac{xy + yz + zx}{xyz} = 0$ $\therefore xy + yz + zx = 0$