
1. X의 값이 a, c, d, e이고, Y의 값이 b, c, d에서 (X, Y)로 이루어지는 순서쌍의 개수를 구하여라.

좌표평면 위에 있는 각 점의 좌표가 옳은 것은? В \mathbf{D} ① A(3, 4)② B(4, 0)-5 (4) D(-2, 1) \bigcirc C(4, 2) ⑤ E(-3, 1)

- **3.** 점 (a, b)가 제 2사분면 위의 점일 때, 다음 중 제 3사분면 위의 점은?
 - \bigcirc (b, a)

② (-a, b)

(3)(a, a-b)

4 (ab, b)

⑤ (ab, a+b)

해설

a < 0, b > 0 ①(b, a): b > 0, a < 0(제 4사분면)

②(-a, b): -a > 0, b > 0(제 1사분면)

③(a, a-b): a < 0, a-b < 0(제 3사분면)

④(ab, b): ab < 0, b > 0(제 2사분면)

⑤(ab, a+b): ab < 0, a+b는 부호를 알 수 없으므로 판단불가

4. 다음 함수 중 그래프가 x 축에 가장 가까운 것을 고르면?

①
$$y = 3x$$
 ② $y = \frac{1}{2}x$ ③ $y = -x$
② $y = \frac{3}{4}x$

$$y = ax$$
 의 그래프에서 $|a|$ 의 값이 작을수록 x 축에 가깝다. $|3| > |-1| > \left|\frac{3}{4}\right| > \left|\frac{1}{2}\right| > \left|-\frac{2}{5}\right|$

5. 오른쪽 그림은 함수
$$y = f(x)$$
의 그래프이다. $f(-2) = a, f(b) = 3$ 일 때, $a + b$ 의 값을 구하여라.

$$y = kx$$
의 그래프가 점 $(4, 2)$ 를 지나므로 $2 = 4k, k = \frac{1}{2}$
 $\therefore y = \frac{1}{2}x$

$$f(-2) = \frac{1}{2} \times (-2) = -1 = a$$
$$f(b) = \frac{b}{2} \times b = 3, b = 6$$

 $\therefore a + b = (-1) + 6 = 5$

6. 두 점 A(a, b-2), B(3b, a+1) 가 x 축 위에 있고, 점 C 의 좌표가 C(2a+b, a+2b) 일 때, \triangle ABC 의 넓이를 구하면?

① 6 ②
$$\frac{21}{2}$$
 ③ 12 ④ $\frac{27}{2}$ ⑤ 21

해설
$$x$$
축 위의 점은 y 좌표가 0 이므로 $b-2=0$, $b=2$, $a+1=0$, $a=-1$, $A(-1,0)$, $B(6,0)$, $C(0,3)$ 이므로 $S=7\times3\times\frac{1}{2}=\frac{21}{2}$

7. 점 P (a, b) 가 제 4 사분면 위의 점일 때, 점 A $(a^2, b-a)$ 는 제 몇 사분면 위의 점인가?

해설

$$a>0,\ b<0$$
 이므로 $a^2>0,\ b-a<0$
따라서 A $\left(a^2,\ b-a\right)$ 는 제 4 사분면 위에 있다.

직선 $y = \frac{7}{4}x$, $y = -\frac{7}{5}x$, y = -7 에 대하여 서로 만나는 점을 꼭짓점 으로 하는 삼각형의 넓이를 구하여라.

▶ 답:

$$ightharpoons$$
 정답: $rac{63}{2}$

$$y = -7$$
 이 두 직선 $y = \frac{7}{4}x$, $y = -\frac{7}{5}x$ 와 만나는 점 \rightarrow 각 함수식 에 $y = -7$ 대입하다

에
$$y = -7$$
 대입한다.

$$-7 = \frac{7}{4}x \therefore x = -4$$

$$-7 = \frac{7}{4}x$$
 : $x = -4$
따라서교점의좌표는(-4, -7)

$$-7 = -\frac{7}{5}x$$
 $\therefore x = 5$
따라서교점의좌표는 $(5, -7)$

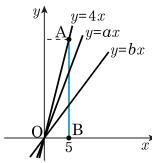
서로 만나는 꼭짓점의 좌표는
$$(-4,-7)$$
, $(5,-7)$, $(0,0)$
삼각형의 넓이는 $\frac{1}{2}\left\{5-(-4)\right\}\times 7=\frac{63}{2}$

9. 임의의 점 P_1 을 x축에 대하여 대칭이동한 점을 P_2 , 점 P_2 를 직선 y=x에 대하여 대칭이동한 점을 P_3 , 점 P_3 를 y축에 대하여 대칭이동한 점을 P_4 , ... 라 하며, 이 과정을 반복하여 시행한다. 점 $P_1(3,-5)$ 가 주어졌을 때, 점 P_{58} 의 좌표를 $P_{58}(a,b)$ 라 할 때, b-a의 값은?

 \bigcirc 7

(5) 9

① 5


(2) 6

y축에 대하여 대칭이동한 점 P_4 는 (-5,3) 같은 방법으로 계속하면 $P_5(-5,-3),P_6,P_7\cdots$ 이 되고, $P_1=P_7$ 이 되므로 여섯 번 이동하면 처음과 같아진다.

또, 이 점을 y = x에 대하여 대칭이동한 점 P_3 는 (5,3)

따라서 $P_{58} = P_6 \times 9 + 4 = P_4$ 이므로 (-5,3)이고, b-a = 3 - (-5) = 8이다.

10. 다음 그림과 같이 직선 y = 4x 위의 한 점 A 에서 x축에 내린 수선의 발을 B(5,0) 이라고 한다. y = ax, y = bx 의 그래프가 삼각형 AOB의 넓이를 3등분 할 때, a - b 의 값은?

①
$$\frac{1}{3}$$
 ② $\frac{2}{3}$ ③ 1 ④ $\frac{4}{3}$ ⑤ $\frac{5}{3}$

해설
선분 AB를 3등분하는 점들의 좌표는
$$\left(5, \frac{20}{3}\right), \left(5, \frac{40}{3}\right)$$
이므로
$$\frac{20}{3} = 5b, \ b = \frac{4}{3}$$

$$\frac{40}{3} = 5a, \ a = \frac{8}{3}$$

$$\therefore a - b = \frac{4}{3}$$