1. 
$$\sqrt{30+x}$$
 의 값이 자연수가 되도록 하는 가장 작은 자연수  $x$  는?

① 4 ② 6 ③ 9 ④ 10 ⑤ 19



2. 
$$\sqrt{10-x}$$
 가 가장 큰 자연수가 되도록 하는 자연수  $x$  는?

해설 
$$x = 1$$
 일 때  $\sqrt{10 - x} = \sqrt{10 - 1} = \sqrt{9} = 3$  이 되므로 성립한다.  $x = 1$ 

3. 
$$\sqrt{\left(2-\sqrt{2}\right)^2} - \sqrt{\left(1-\sqrt{2}\right)^2}$$
 을 간단히 하면?

① 1 ② 
$$-1$$
 ③  $3-2\sqrt{2}$ 

$$4 -3 + 2\sqrt{2}$$
  $5 1 - 2\sqrt{3}$ 

$$1 < \sqrt{2} < 2$$
 이므로  $2 - \sqrt{2} > 0$ ,  $1 - \sqrt{2} < 0$   
 $\left| 2 - \sqrt{2} \right| - \left| 1 - \sqrt{2} \right| = 2 - \sqrt{2} + 1 - \sqrt{2}$   
 $= 3 - 2\sqrt{2}$ 

- $-\sqrt{10}$  와  $\sqrt{17}$  사이의 정수의 개수는 몇 개인가?
  - ① 5 개 ② 6 개 ③ 7 개 <mark>④</mark> 8 개 ⑤ 9 개

5.  $\sqrt{150} = a\sqrt{6}$ ,  $2\sqrt{2} = \sqrt{b}$  일 때, a + b 의 값은?

$$\sqrt{150} = 5\sqrt{6} \qquad \therefore a = 5$$

$$2\sqrt{2} = \sqrt{8} \qquad \therefore b = 8$$

$$\therefore a + b = 5 + 8 = 13$$

3. 
$$\sqrt{60} \div \frac{\sqrt{4}}{\sqrt{3}} = 3\sqrt{a}$$
 일 때, 자연수  $a$  의 값을 구하여라.

গ্ৰন্থ 
$$\sqrt{60} \div \frac{\sqrt{4}}{\sqrt{3}} = \sqrt{60} \times \frac{\sqrt{3}}{\sqrt{4}}$$
$$= \sqrt{15} \times \frac{\sqrt{3}}{1}$$
$$= \sqrt{45}$$
$$= 3\sqrt{5}$$
$$\therefore a = 5$$



$$\bigcirc \frac{3}{10}$$
 3  $\frac{4}{11}$  4  $\frac{5}{11}$ 

 $\sqrt{0.45}$  를  $a\sqrt{5}$  의 꼴로 나타내었을 때, a 의 값을 구하면?

$$\frac{1}{11}$$



$$\sqrt{0.45} = \sqrt{\frac{45}{100}} = \sqrt{\frac{3^2 \times 5}{10^2}} = \frac{3\sqrt{5}}{10}$$

$$\overline{\frac{5}{1}} = \frac{3}{10}$$

8.  $3\sqrt{5} - \sqrt{20} - 2\sqrt{45}$  을 바르게 계산한 것은?

(1) 
$$-2\sqrt{5}$$

 $(4) - 5\sqrt{5}$ 

②  $-3\sqrt{5}$ 

$$\bigcirc$$
  $-6\sqrt{5}$ 

(3)  $-4\sqrt{5}$ 

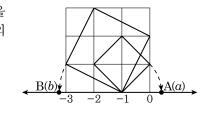
$$3\sqrt{5} - \sqrt{20} - 2\sqrt{45} = 3\sqrt{5} - 2\sqrt{5} - 6\sqrt{5}$$
$$= -5\sqrt{5}$$

9. a > 0, b < 0 일 때,  $\sqrt{a^2} + \sqrt{(-b)^2} - \sqrt{4a^2} - \sqrt{b^2}$  을 간단히 하면?

① 
$$-a - b$$
 ②  $-a - 2b$  ③  $a$ 
②  $-a + 2b$ 

$$a > 0$$
이므로  $2a > 0$ ,  
 $b < 0$ 이므로  $-b > 0$ ,  $b < 0$   
 $(\sqrt{a})^2 + \sqrt{(-b)^2} - \sqrt{(2a)^2} - \sqrt{b^2}$   
 $= a + (-b) - (2a) - (-b)$   
 $= a - b - 2a + b = -a$ 

10. 다음 그림을 보고 옳지 <u>않은</u> 것을 고르면?(단, 모눈 한 칸은 한 변의 길이가 1 인 정사각형이다.)



- ① a 와 b 사이에는 유리수가 무수히 많다.
- ② a 와 b 사이에는 무리수가 무수히 많다.
- ③ A의 좌표는  $A(-1+\sqrt{2})$  이다.
- ④ B의 좌표는 B(-1 √5) 이다.
- 5a 와 b 의 중점의 좌표는  $\frac{\sqrt{5}-\sqrt{2}}{2}$  이다.

해설 
$$a \quad \text{와} \quad b \quad \text{의 중점의 좌표는 } \frac{(-1-\sqrt{5})+(-1+\sqrt{2})}{2} = \frac{-2-\sqrt{5}+\sqrt{2}}{2} \text{ 이다.}$$

**11.** 
$$a = 6 - \sqrt{5}$$
,  $b = 1 + 2\sqrt{5}$  일 때, 다음 중 옳은 것은?

① 
$$a + b < 0$$

(4) b-4<0

a - 4 < 0

⑤ 
$$2a + b > 15$$

① 
$$a + b = 6 - \sqrt{5} + 1 + 2\sqrt{5} = 7 + \sqrt{5} > 0$$
  
②  $a - b = 6 - \sqrt{5} - 1 - 2\sqrt{5} = 5 - 3\sqrt{5} < 0$ 

⑤ 
$$2a + b = 12 - 2\sqrt{5} + 1 + 2\sqrt{5} = 13 < \sqrt{15}$$

**12.** 다음 수직선 위의 점 중에서  $-\sqrt{17} + 6$  에 대응하는 점은?

① A ② B

3) C

**4)**I

E

 $\dot{z} = \sqrt{17} + 6$ 에 대응하는 점은 점 D 이다.

**13.**  $\sqrt{5} = a$ ,  $\sqrt{7} = b$  라 할 때,  $\sqrt{0.014}$  를 a, b 를 사용하여 나타내면?

해설 
$$\sqrt{0.014} = \sqrt{\frac{140}{10000}} = \frac{\sqrt{2^2 \times 5 \times 7}}{100} = \frac{2}{100} \times \sqrt{5} \times \sqrt{7} = \frac{1}{50}ab$$

**14.** 
$$\frac{4}{\sqrt{10}} \times \sqrt{30} \div \frac{\sqrt{12}}{\sqrt{5}}$$
 를 간단히 한 것은?

① 2 ② 
$$2\sqrt{5}$$
 ③  $3\sqrt{2}$  ④  $3\sqrt{5}$  ⑤  $4\sqrt{2}$ 

$$\frac{4}{\sqrt{10}} \times \sqrt{30} \div \frac{\sqrt{12}}{\sqrt{5}} = \frac{4}{\sqrt{10}} \times \sqrt{30} \times \frac{\sqrt{5}}{2\sqrt{3}}$$
$$= 2\sqrt{\frac{30 \times 5}{10 \times 3}} = 2\sqrt{5}$$

**15.** 한 면의 넓이가  $54 \, \mathrm{cm}^2$  인 정육면체가 있다. 이 정육면체의 부피를 구하여라.

답:  $\rm cm^3$ 

 $\triangleright$  정답:  $162\sqrt{6}\,\mathrm{cm}^3$ 

해설 한 변의 길이가  $\sqrt{54}$  cm 이므로

정육면체의 부피는  $\sqrt{54} \times \sqrt{54} \times \sqrt{54} = 54\sqrt{54}$ 

 $= 54 \times 3 \sqrt{6}$ 

 $= 162 \sqrt{6} (\text{cm}^3)$ 

**16.**  $4+\sqrt{3}$ 의 소수 부분이 a, 정수 부분이 b일 때,  $ab-\frac{2}{a}$ 의 값을 구하여라.

$$4 + \sqrt{3} = 5. \times \times$$
이므로

$$a = \sqrt{3} - 1, \ b = 5$$

$$\frac{2}{a} = \frac{2(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \sqrt{3} + 1$$

$$\therefore ab - \frac{2}{a} = 5\left(\sqrt{3} - 1\right) - \left(\sqrt{3} + 1\right)$$
$$= 5\sqrt{3} - 5 - \sqrt{3} - 1$$
$$= 4\sqrt{3} - 6$$

17.  $6 < x \le 10, \ 2 \le \sqrt{x} < 3$ 을 동시에 만족하는 자연수 x를 모두 구하여 라

해설 6 < x ≤

 $6 < x \le 10$ 에서 x = 7, 8, 9, 10 $2 \le \sqrt{x} < 3, 4 \le x < 9$ 에서 x = 4, 5, 6, 7, 8따라서 자연수  $x \vdash 7, 8$ 

**18.** 
$$\frac{\sqrt{4^2}}{2} = a, -\sqrt{(-6)^2} = b, \sqrt{(-2)^2} = c$$
라 할 때,  $2a^2 \times b^2 - b \div c$ 의 값은?

해설
$$a = \frac{\sqrt{4^2}}{2} = \frac{4}{2} = 2, \ b = -\sqrt{(-6)^2} = -6, \ c = \sqrt{(-2)^2} = 2$$

$$\therefore 2a^2 \times b^2 - b \div c = 2 \times 4 \times 36 - (-6) \times \frac{1}{2}$$

$$= 288 + 3 = 291$$

19. 자연수 x 에 대하여  $f(x) = (\sqrt{x}$ 이하의 자연수 중 가장 큰 수) 라고 할 때, f(90) - f(40)의 값은? (단, x 는 자연수이다.)

 $\bigcirc$  1

해설  

$$81 < 90 < 100$$
 이므로  $9 < \sqrt{90} < 10$   
 $\therefore f(90) = 9$   
 $36 < 40 < 49$  이므로  $6 < \sqrt{40} < 49$   
 $\therefore f(40) = 6$   
 $\therefore f(90) - f(40) = 9 - 6 = 3$ 

**20.** a는 유리수, b는 무리수일 때, 다음 중 그 값이 항상 무리수인 것은?

① 
$$\sqrt{a} + b$$
 ②  $\frac{b}{a}$ 
②  $\frac{b}{a}$ 

$$3 a^2 - b^2$$

① 
$$a=2, b=-\sqrt{2}$$
 일 때,  $\sqrt{2}+(-\sqrt{2})=0$  이므로 유리수이다.

③ 
$$b = \sqrt{2}$$
 일 때,  $b^2 = 2$  이므로  $a^2 - b^2$  는 유리수이다.

④ 
$$a = 0$$
 일 때,  $ab = 0$  이므로 유리수이다.

⑤ 
$$a = 2, b = \sqrt{8}$$
 일 때,  $\frac{\sqrt{8}}{\sqrt{2}} = 2$  이므로 유리수이다.

## 21. 다음 중 그 결과가 반드시 무리수인 것은?

① (무리수)+ (무리수)

② (무리수)- (무리수)

③ (유리수)× (무리수)

④ (무리수)÷ (무리수)

⑤ (무리수)- (유리수)

① 
$$\sqrt{2} + (-\sqrt{2}) = 0$$
 (유리수)  
②  $\sqrt{2} - \sqrt{2} = 0$  (유리수)

③ 
$$0 \times \sqrt{2} = 0$$
 (유리수)

④  $\sqrt{2} \div \sqrt{2} = 1$  (유리수)

**22.** 다음 제곱근표를 이용하여  $\sqrt{55}$  의 값을 구하면?

| 수   | 0    | 1    | 2    | 3    | 4    | 5    |
|-----|------|------|------|------|------|------|
| 2.0 | 1.41 | 1.41 | 1.42 | 1.42 | 1.42 | 1.43 |
| 2.1 | 1.44 | 1.45 | 1.45 | 1.45 | 1.46 | 1.46 |
| 2.2 | 1.48 | 1.48 | 1.49 | 1.49 | 1.49 | 1.50 |
| 2.3 | 1.51 | 1.52 | 1.52 | 1.52 | 1.53 | 1.53 |
| 2.4 | 1.54 | 1.55 | 1.55 | 1.55 | 1.56 | 1.56 |

$$\sqrt{55} = \sqrt{2.2 \times 25} = 5\sqrt{2.2} = 5 \times 1.48 = 7.40$$

**23.** 
$$-1 < x < 1$$
 일 때,  $\sqrt{(1-x)^2} + \sqrt{(1+x)^2} - |-1-x|$  를 간단히 하여라.

$$\sqrt{(1-x)^2} + \sqrt{(1+x)^2} - |-1-x|$$

$$= (1-x) + (1+x) - \{-(-1-x)\}$$

$$= 1-x+1+x-1-x = 1-x$$

**24.**  $x = 2\sqrt{2} + 1$ 일 때,  $x^3 - 2x^2 + x - 5$ 의 값을 구하여라.

$$ightharpoonup$$
 정답:  $16\sqrt{2} + 3$ 

$$x=2\sqrt{2}+1$$
 에서  $x-1=2\sqrt{2}$  이므로 양변을 제곱하면

$$x^2 - 2x + 1 = 8, x^2 - 2x = 7$$

∴ (주어진 식) = 
$$x(x^2 - 2x) + x - 5$$

$$= 8x - 5 = 8(2\sqrt{2} + 1) - 5$$
$$= 16\sqrt{2} + 3$$

**25.** 자연수 
$$n$$
 에 대하여  $\sqrt{n}$  을 넘지 않는 최대 정수 부분을  $f(n)$  으로 나타내고,  $f(n)=11$  인 자연수  $n$  의 최댓값을  $a$  , 최솟값을  $b$  라 할 때,  $f\left(\frac{a-b}{3}\right)$  의 값을 구하여라.

▷ 정답: 2

$$f(n) = 11$$
 이므로

$$f(n) = 11 \text{ OLS}$$

 $11 \le \sqrt{n} < 12$ 

따라서 최댓값 a = 143, 최솟값 b = 121 이다.

즉, 
$$f\left(\frac{a-b}{3}\right) = f\left(\frac{22}{3}\right)$$
 에서  $\sqrt{\frac{22}{3}}$  를 넘지 않는 최대 정수는 2 이다.