1. 다음 두 다항식 *A*, *B*에 대하여 *A – B*를 구하면?

$$A = 2y^2 + x^2 - 3xy, \ B = -4x^2 - 2xy + 5y^2$$

- ① $5x^2 2xy + 3y^2$ $3 5x^2 + xy + 3y^2$
- $25x^2 xy 3y^2$ $4 5x^2 + 2xy - 3y^2$
- $(5) 5x^2 + 3xy + 3y^2$

동류항끼리 계산해 준다.

해설

$$A - B = (2y^2 + x^2 - 3xy) - (-4x^2 - 2xy + 5y^2)$$
$$= 5x^2 - xy - 3y^2$$

2. 점 (1,2) 를 지나고, y 축에 평행한 직선의 방정식을 구하여라

답:

➢ 정답: x = 1

해설

점 (1, 2) 를 지나고 y 축에 평행한 직선이므로 $\therefore x = 1$

- 3. $a^2 + b^2 + c^2 = 9$, ab + bc + ca = 9, a + b + c의 값은?
 - ① $-3\sqrt{2}$
- ② $-2\sqrt{3}$
- ③ $\pm 3\sqrt{3}$
- (4) $\pm 3\sqrt{2}$
- \bigcirc $\sqrt{6}$

=9+18=27

 $\therefore a+b+c=\pm 3\sqrt{3}$

해설 $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$

 $(1+ai)^2 = 2i \ (a 는 실수)$ 라 할 때 (1+ai)(1-ai) 의 값을 구하시오. **4.** (단, $i = \sqrt{-1}$)

▶ 답:

▷ 정답: 2

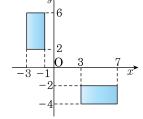
해설

 $(1+ai)^2 = 2i$ 에서 $(1-a^2) + 2ai = 2i$ 복소수의 상등에서 $1-a^2=0,\ 2a=2$

 $\therefore a = 1$

 $\therefore (1+ai)(1-ai) = (1+i)(1-i)$ =1-(-1)=2

- 5. 다음 그림의 좌표평면 위에서 두 직사각형 의 넓이를 모두 이등분하는 직선의 기울기 는?



직사각형의 넓이는 두 대각선의 교점을 지나는 직선에 의하여

이등분된다. 따라서, 두 대각선의 교점의 좌표는 각각 $A(-2,\ 4),\ B(5,\ -3)$

이므로 직선 AB의 기울기는 $\frac{-3-4}{5-(-2)} = -1$

- 6. 두 직선 x + y = 1, ax + 2y + a + 2 = 0 이 제 1사분면에서 만나도록 하는 정수 a 값의 개수를 구하면?
 - ① 1
- **2**2

- 3 3 4 4 5 5

해설 $x + y = 1 \cdots \bigcirc$

$$ax + 2y + a + 2 = 0 \cdot \cdot \cdot \bigcirc$$

$$\Box - \bigcirc \times 2 : (a-2)x + \Box$$

$$\Rightarrow y = 1 - x = \frac{2a + 2}{a - 2}$$

$$\therefore$$
 교점 : $\left(\frac{a+4}{2-a}, \frac{2a+2}{a-2}\right)$

교점이 제 1 사분면에 있으므로
$$\frac{a+4}{2-a} > 0, \ \frac{2a+2}{a-2} > 0$$

$$(a-2)(a+4) < 0, \ 2(a+1)(a-2) > 0$$

$$\Rightarrow -4 < a < 2, \ a < -1 \ or \ a > 2$$
∴ $-4 < a < -1$

- 7. 점 P(1,2) 에서 직선 2x + y 3 = 0 에 내린 수선의 발을 H 라할 때, 수선 PH 의 길이는?
 - $\bigcirc \frac{\sqrt{5}}{5} \qquad \bigcirc \frac{\sqrt{3}}{3} \qquad \bigcirc 3 \ 4\sqrt{2} \qquad \bigcirc 4 \ 2 \qquad \bigcirc 5 \ 3$

해설 (PH 의 길이) = (점 P(1, 2) 와 직선 2x + y - 3 = 0 과의 거리)

 $\therefore \overline{PH} = \frac{|2+2-3|}{\sqrt{4+1}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$

8. 직선 x + 3y - k = 0이 원 $(x - 5)^2 + y^2 = 3$ 의 넓이를 이등분할 때, k의 값은?

- ① -1 ② 0 ③ 1 ④ 3

직선이 원의 넓이를 이등분하려면 직선이 원의 중심을 지나면

해설

된다. 따라서 원의 중심 $(5,\ 0)$ 이 직선 위에 있으므로 5-k=0

 $\therefore k = 5$

9. $(4x^2 - 3x + 1)^5(x^3 - 2x^2 - 1)^4$ 을 전개했을 때, 계수들의 총합을 구하여라.

▶ 답:

➢ 정답: 512

해설

 $(4x^2-3x+1)^5(x^3-2x^2-1)^4=ax^{22}+bx^{21}+\cdots+c$ 위의 식에 x=1을 대입하면, 모든 계수들의 총합이 나온다.

∴ (계수의 총합) = 2⁵ × (−2)⁴ = 512

10. (x-3)(x-1)(x+2)(x+4)+24 를 인수분해하면 $(x+a)(x+b)(x^2+cx+d)$ 이다. a+b+c-d의 값을 구하여라.

▶ 답:

➢ 정답: 10

해설

 $x^2 + x = A$ 로 치환하면

(x-3)(x-1)(x+2)(x+4) + 24 $= \{(x-1)(x+2)\}\{(x-3)(x+4)\} + 24$

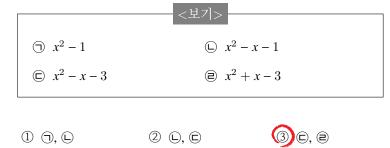
 $= (x^2 + x - 2)(x^2 + x - 12) + 24$

= (A-2)(A-12) + 24

 $= A^2 - 14A + 48 = (A - 6)(A - 8)$ $= (x^2 + x - 6)(x^2 + x - 8)$

 $= (x-2)(x+3)(x^2+x-8)$ $\therefore a+b+c-d=-2+3+1-(-8)=10$

11. 다음 <보기> 중 다항식 $x^4 - 7x^2 + 9$ 을 인수분해 할 때, 그 인수로 알맞은 것을 모두 고르면?



(4) (7), (C), (C) (S) (C), (C), (C)

해설

 $x^{4} - 7x^{2} + 9 = x^{4} - 6x^{2} + 9 - x^{2}$ $= (x^{2} - 3)^{2} - x^{2}$ $= (x^{2} - x - 3)(x^{2} + x - 3)$ $\therefore 인수: (x^{2} - x - 3), (x^{2} + x - 3)$

- **12.** 복소수 $a^2(1+i)+a(3+2i)+2$ 를 제곱하면 음의 실수가 된다. 이 때, 실수 a의 값을 구하면? (단, $i=\sqrt{-1}$)
 - ① -3 ② -2 ③ -1 ④ 0 ⑤ 1

(준식) = $(a^2 + 3a + 2) + (a^2 + 2a) i \Rightarrow 순하수$ 즉, $a^2 + 3a + 2 = 0$ $a^2 + 2a \neq 0$ 이므로 $\therefore a = -1$

- 13. 계수가 실수인 x에 대한 이차방정식 $mx^2 + 2(a-b-m)x a + m + 1 = 0$ 이 m의 값에 관계없이 중근을 갖도록 하는 실수 a, b의 값은?
 - ③ a = 0, b = 1

① a = -1, b = 0

- ② a = -1, b = -1
- ⑤ a = 1, b = 2
- $\bigcirc a = 1, \ b = 1$

주어진 이차방정식의 판별식을 D라고 할 때,

m ≠ 0이고, 중근을 가지려면 D=0이어야 하므로

 $\frac{D}{4} = (a - b - m)^2 - m(-a + m + 1)$

 $a^2 + b^2 - 2ab + 2bm - am - m = 0$

이 때, 이 등식이 m의 값에 관계없이 항상 성립해야 하므로

m에 대하여 정리하면

 $(2b - a - 1)m + (a - b)^2 = 0$ 2b - a - 1 = 0, $(a - b)^2 = 0$

두 식을 연립하여 풀면

a = 1, b = 1

14. 이차방정식 $x^2 - 14kx + 96k = 0$ 의 두 근의 비가 3:4일 때, 양수 k의 값을 구하여라.

▶ 답:

▷ 정답: k = 2

해설

두 근을 3α , 4α 라고 하면 근과 계수의 관계에 의하여 $3\alpha + 4\alpha = 14k \cdot \cdot \cdot \cdot \cdot \bigcirc$ $3\alpha \cdot 4\alpha = 96k \cdot \cdot \cdot \cdot \cdot \Box$ ①에서 $7\alpha = 14k$ $\therefore \alpha = 2k \cdot \cdot \cdot \cdot$ © \bigcirc 에서 $12\alpha^2=96k$ \therefore $\alpha^2=8k\cdots\cdots$ \bigcirc ⑤을 ②에 대입하면 $4k^2=8k,\ 4k(k-2)=0$ $\therefore k = 0$ 또는 k = 2

따라서 양수 k의 값은 k=2이다.

- **15.** 이차방정식 $x^2 2ax + 4 = 0$ 의 두 근이 모두 1보다 크다. 이 때, 실수 a의 값의 범위를 정하면?
- ① $2 \le a < \frac{5}{2}$ ② $2 \le a \le \frac{5}{2}$ ③ $2 < a < \frac{5}{2}$ ④ $2 \le a < 3$

 $f(x) = x^2 - 2ax + 4$ 라고 하면 (i) $f(1) > 0 \Rightarrow a < \frac{5}{2}$

- (ii) 두근을 가지므로 $\frac{D}{4} = a^2 4 \ge 0$

 $a \le -2$ 또는 $a \ge 2$

- (iii) 그래프의 축이 x = 1의 오른쪽에 있어야하므로
- (i), (ii), (iii)에 의해 $2 \le a < \frac{5}{2}$

- **16.** 두 점 A(-4, 2), B(1, 5)에서 같은 거리에 있고, y축 위에 있는 점 P 의 좌표는?
- ① P(0, -2) ② P(0, -1) ③ P(0, 1)
- (4) P(0, 2) (5) P(0, $\frac{5}{2}$)

점 P 의 좌표를 P(0, b) 라 하면 $\overline{\mathrm{PA}} = \overline{\mathrm{PB}}$ 이므로

 $\overline{PA}^2 = \overline{PB}^2$ 에서

 $(-4-0)^2 + (2-b)^2 = (1-0)^2 + (5-b)^2$

 $b^2 - 4b + 20 = b^2 - 10b + 26$ 6b = 6

 $\therefore b = 1$

따라서 점 P의 좌표는 P(0, 1)이다.

17. 두 점 A(1,1), B(4,3)에 대하여 점 P가 x축 위의 점 일때, $\overline{\mathrm{AP}}+\overline{\mathrm{BP}}$ 의 최솟값은?

해설

① 5 ② $2\sqrt{2}$ ③ $4\sqrt{2}$ ④ $8\sqrt{2}$ ⑤ 8

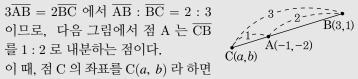
 $\overline{\mathrm{AP}} + \overline{\mathrm{BP}}$ 의 최솟값은 A (1,1)을 x축에 대해 대칭이동시킨 A'(1, -1) 과 B (4,3)을 잇는 선분의 길이와 같

 $\overline{\mathrm{AP}} + \overline{\mathrm{BP}}$ 의 최솟값은 $\overline{\mathrm{A'B}}$ 이므로 $\overline{A'B} = \sqrt{(4-1)^2 + (3+1)^2} =$

 $\sqrt{25} = 5$

- **18.** 두 점 A(-1, -2), B(3, 1) 에 대하여 점 A의 방향으로 그은 $\overline{\rm AB}$ 의 연장선 위에 $3\overline{AB}=2\overline{BC}$ 가 되게 하는 점 C 의 좌표를 구하면?
 - ① $C\left(-2, -\frac{3}{2}\right)$ ② $C\left(-2, -\frac{5}{2}\right)$ ③ $C\left(-2, -3\right)$ ④ $C\left(-3, -\frac{5}{2}\right)$

해설



를 1 : 2 로 내분하는 점이다. 이 때, 점 C 의 좌표를 C(a, b) 라 하면

$$A\left(\frac{1\cdot 3+2a}{1+2}, \frac{1\cdot 1+2b}{1+2}\right)$$
이므로
$$\frac{3+2a}{3}=-1 \, 에서 \, a=-3$$

$$\frac{3+2a}{3} = -1 \text{ odd } a = -3$$

$$\frac{1+2b}{3} = -2 \text{ odd } b = -\frac{7}{2}$$

따라서 점
$$C$$
의 좌표는 $C\left(-3, -\frac{7}{2}\right)$ 이다.

19. 두 원 $x^2 + y^2 = r^2$ (r > 0), $(x + 3)^2 + (y - 4)^2 = 4$ 가 외접할 때, r의 값을 구하여라.

▶ 답:

▷ 정답: 3

두 원 $x^2+y^2=r^2$ (r>0), $(x+3)^2+(y-4)^2=4$ 의 중심 사이의 거리 $d=\sqrt{(-3)^2+4^2}=5$ 두 원이 외접하면 r+2=5이므로 r=3

20. 직선 3x + 4y + a = 0 이 원 $x^2 + y^2 = 4$ 와 서로 다른 두 점에서 만나도록 하는 정수 a 의 개수를 구하여라.

 답:
 <u>개</u>

 ▷ 정답:
 19 개

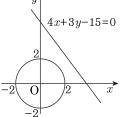
02: 10_

직선이 원과 서로 다른 두 점에서 만나려면

원의 중심에서 직선까지의 거리(d) 보다 원의 반지름 (r) 이 크다. $d = \frac{|3 \times 0 + 4 \times 0 + a|}{\sqrt{3^2 + 4^2}} = \frac{|a|}{5} < 2 = r$

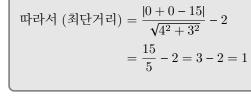
 $\begin{aligned} \frac{|a|}{5} < 2 \;, \; |a| < 10, \; -10 < a < 10 \\ a = -9, \; -8, \; -7, \; -6, \; \cdots, \; 6, \; 7, \; 8, \; 9 \; \therefore \; 19 \; \text{Th} \end{aligned}$

21. 다음 그림과 같이 원점이 중심이고 반지름의 길이가 2 인 원이 있다. 직선 4x+3y-15=0위의 한 점 P 에서 이 원까지의 최단거리는 ①1 ② 2 ③ 3 ④ 4 ⑤ 5



길이를 뺀 것이다.

직선 위의 한 점 P 에서 원까지의 최단거리는 원점에서 직선까지의 거리에서 원의 반지름의



22. 다항식 f(x)에 대하여 f(x)+2, xf(x)+2가 모두 일차식 $x-\alpha$ 로 나누어떨어질 때, f(1)의 값을 구하면?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

 $\begin{cases} f(x) = (x - \alpha)Q(x) - 2 \cdots \bigcirc \\ xf(x) = (x - \alpha)Q'(x) - 2 \cdots \bigcirc \end{cases}$ $\bigcirc \times x = \bigcirc \bigcirc |A|$ $xf(x) = (x - \alpha)Q(x) - 2x$ $= (x - \alpha)Q(x) - 2(x - \alpha) - 2\alpha$ $= (x - \alpha)\{Q(x) - 2\} - 2\alpha$ $\therefore -2\alpha = -2$ $\therefore \alpha = 1$ $\therefore f(x) = (x - 1)Q(x) - 2$ $\therefore f(1) = -2$

 $f(x) + 2, x f(x) + 2 가 모두 일차식 <math>x - \alpha$ 로 나누어떨어지므로 $f(\alpha) + 2 = 0 \therefore f(\alpha) = -2 \cdots ①$ $\alpha f(\alpha) + 2 = 0 \cdots ②$ ①, ②에서 $\alpha = 1$ $\therefore f(1) = f(\alpha) = -2(\because ①)$

23. 두 실수 a, b에 대하여 $[a,b]=a^2-b^2$ 라 할 때, $[x^2,x-1]+[2x+1,3]+[0,1]$ 을 인수분해하면 $(x-a)(x^3+x^2+bx+c)$ 이다. 이 때, 상수 a, b, c의 합 a+b+c의 값은?

① 5 ② 10 ③ 15 ④ 20 ⑤ 25

해설

 $[x^2, x-1] + [2x+1, 3] + [0, 1]$ $= x^4 - (x-1)^2 + (2x+1)^2 - 9 + 0 - 1$ $= x^4 - x^2 + 2x - 1 + 4x^2 + 4x + 1 - 10$ $= x^4 + 3x^2 + 6x - 10$ $= (x-1)(x^3 + x^2 + 4x + 10)$ $= (x-a)(x^3 + x^2 + bx + c)$ 따라서, a = 1, b = 4, c = 10이므로 a + b + c = 15

- **24.** α , β 가 복소수일 때, 다음 중 옳은 것의 개수는?(단, $\overline{\alpha}$, $\overline{\beta}$ 는 각각 α , β 의 켤레복소수이고, $i=\sqrt{-1}$ 이다.)
 - ① $\alpha = \overline{\beta}$ 이면 $\alpha + \beta$, $\alpha\beta$ 는 모두 실수이다. ② $\alpha = \overline{\beta}$ 일 때, $\alpha\beta = 0$ 이면 $\alpha = 0$ 이다.
 - © $\alpha^2 + \beta^2 = 0$ 이면 $\alpha = 0$, $\beta = 0$ 이다.
 - ② $\alpha + \beta i = 0$ 이면 $\alpha = 0$, $\beta = 0$ 이다.
 - _
- ②2개
- ③ 3개
- ④ 4개
- ⑤ 없다

\bigcirc $\alpha = a + bi$ (a, b 는 실수)라 하면

해설

① 1개

- $\alpha = \overline{\beta} \circ] \square \vec{\Xi} \beta = a bi$
 - $\therefore \alpha + \beta = (a+bi) + (a-bi) = 2a$
 - $\alpha\beta = (a+bi)(a-bi) = a^2 + b^2$ ∴ $\alpha + \beta$, $\alpha\beta$ 는 실수이다.
- ① : ①에서 αβ = a² + b² = 0, a, b는
 실수이므로 a = 0, b = 0 즉, = a + bi = 0이다.
 ② : (반례) α = i, β = 1
- $\therefore \alpha^2 + \beta^2 = i^2 + 1^2 = 0$ ② :(반례) $\alpha = 1, \beta = i$
- $\therefore \alpha + \beta i = 0$
- \therefore \bigcirc , \bigcirc 는 α , β 가 실수일 때만 성립한다.

- **25.** 점 P(a, b) 가 원 $x^2 + y^2 = 1$ 위를 움직일 때, 점 P(a,b), Q(a,0), O(0,0) 을 꼭짓점으로 하는 삼각형의 최대 넓이
 - ① $\frac{1}{2}$ ② $\frac{1}{3}$ ③ $\frac{1}{4}$ ④ $\frac{1}{5}$ ⑤ $\frac{1}{6}$

a, b 의 부호와 상관 없으므로 a > 0, b > 0 이라 하면

 $\triangle POQ$ 의 넓이 : $\frac{1}{2} \times a \times b = \frac{1}{2}ab$ P 가 $x^2 + y^2 = 1$ 위의 점 이므로 $a^2 + b^2 = 1$

산술기하조건을 이용하면, $a^2 + b^2 \ge 2\sqrt{a^2 \times b^2} = 2ab$

 $ab \le \frac{1}{2}$

 \therefore 넓이의 최댓값 : $\frac{1}{4}$