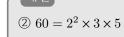

1. $2^a = 8$, $6^2 = b$ 를 만족하는 자연수 a, b 의 값을 구하여라.

 $6^2 = 6 \times 6 = 36$ 이므로 b = 36 이다.


- - ① $36 = 2^2 \times 3^2$

다음 수를 소인수분해한 것 중에 옳지 않은 것은?

- $398 = 2 \times 7^2$
- (5) $120 = 2^3 \times 3 \times 5$

- $4 105 = 3 \times 5 \times 7$

3. 다음 중 2⁴ x 3² x 5³ 의 소인수를 모두 구한 것은?

(3) 2

- ① 2, 3, 5 ② 2, 3
- $\textcircled{4} \ 3,5 \qquad \qquad \textcircled{5} \ 2^3,5$

2⁴×3²×5³ 이므로 소인수는 2, 3, 5이다.

4. 288 을 어떤 수 x 로 나누어 자연수의 제곱이 되게 하려고 할 때, 가장 작은 자연수 x 를 구하면?

①2 ②3 ③4 ④6 ⑤8

```
해설
```

 $288 = 2^5 \times 3^2$ 가장 작은 자연수 $x \leftarrow 2$ 이다. 5. 자연수 240 과 $2^3 \times 5^n$ 의 약수의 개수가 같을 때, 자연수 n 의 값을 구하여라.

 $2^3 \times 5^n$ 의 약수의 개수는 $(3+1) \times (n+1) = 20$

 $\therefore n=4$

약수의 개수는
$$(4+1) \times (1+1) \times (1+1) = 20$$

6. a 와 15 의 공배수가 15 의 배수와 같을 때, 다음 중 a의 값으로 적당한 것은?

해설
a 와 15 의 공배수가 15 의 배수와 같다는 것은 a 와 15 의 최소 공배수가 15 라는 뜻이다. 따라서 a 와 15 의 최소공배수가 15 가 나오기 위해서는 a 가 15 의 약수가 되어야 한다. 7. 두 수 $2^3 \times 3^4 \times 7^c$, $2^a \times 3^b \times 7^4$ 의 최대공약수가 $2^2 \times 3^2 \times 7^2$ 일 때, a+b+c 의 값은?

(5) 10

① 2 ② 4 ③ 6 ④ 8

최대공약수가 $2^2 \times 3^2 \times 7^2$ 이고 $2^3 \times 3^4 \times 7^c$ 에서 2 의 지수가 3 이므로 $2^a \times 3^b \times 7^4$ 에서 2 의 지수가 2 이어야 한다. 같은 방식으로 $2^3 \times 3^4 \times 7^c$ 에서 3 의 지수가 4 이므로 $2^a \times 3^b \times 7^4$ 에서 3 의 지수가 2 이어야 한다. 또한. $2^a \times 3^b \times 7^4$ 에서 7 의 지수가 4 이므로 $2^3 \times 3^4 \times 7^c$ 에서 7 의 지수가 2 이어야 한다. 따라서 a = 2, b = 2, c = 2 이다.

해설

세 수 35, 77, 110 의 최소공배수를 구하시오.

- ▶ 답:
- ➢ 정답: 770

 $35 = 5 \times 7$

 $77 = 7 \times 11$ $110 = 2 \times 5 \times 11$

 $770 = 2 \times 5 \times 7 \times 11$ ∴ 770

9. 옛날부터 우리나라에는 십간(⋈⋈)과 십이지(⋈⋈⋈)를 이용하여 매해에 이름을 붙였다. 십간과 십이지를 차례대로 짝지으면 다음과 같이 그 해의 이름을 만들 수 있다. 다음 표에서 알 수 있듯이 2011 년은 신묘년이다. 다음 중 신묘년이 <u>아닌</u> 해는?

경

기

임

싞

계

갑

축	인	묘	진	사	외	ㅁ]	신
정축	무인	기묘	경진	신사	임오	계미	갑신
1997	1998	1999	2000	2001	2002	2003	2004
을	병	정	무	기	경	신	
유	술	해	자	축	인	묘	
을유	병술	정해	무자	기축	경인	신묘	
2005	2006	2007	2008	2009	2010	2011	

1881 년

④ 2071년⑤ 2131년

③ 1951년

(4) 2071년 (5) 2131 년

해설

① 1831년

정

십간(☒☒)의 10가지와 십이지(☒☒☒)의 12가지를 계속 돌아가면서 조합이 이루어지므로 같은 이름의 년도는 60년 만에한 번씩 돌아오게 된다. 따라서 2011년이 신묘년이면 1831년, 1891년, 1951년, 2071년, 2131년도 신묘년이다.

10. $2^a \times 3^b \times 11^c$ 이 132 를 약수로 가질 때, 세 자연수 a,b,c 의 최솟값의 합을 구하여라.

- ▶ 답:
- ▷ 정답: 4

해설

1+1=4이다.

132 를 소인수분해하면 $132 = 2^2 \times 3 \times 11$ 이다. 한편 $2^a \times 3^b \times 11^c$ 이 132 를 약수로 가지므로 $a \leftarrow 2$ 보다 크거나 같고, $b \leftarrow 1$ 보다 크거나 같다. 또한 $c \subset 1$ 보다 크거나 같다. 따라서 a,b,c 의 최솟값은 각각 2,1,1 이므로 구하는 합은 2+