- L. 다음 중 옳은 것은?
 - ① $\sqrt{(-3)^2} = \pm 3$ 이다.
 - ② √4 의 제곱근은 ±2 이다.
 - ③ $\sqrt{36} = 18$ 이다.
 - ④ 0 의 제곱근은 없다.
 - ⑤a > 0 일 때, $\sqrt{a^2} = a$ 이다.

- ① $\sqrt{(-3)^2} = \sqrt{9} = 3$ ② $\sqrt{4} = 2$ 의 제곱근 $\pm \sqrt{2}$
- $3\sqrt{36} = 6$
- ④ 0 의 제곱근은 0 이다

2.
$$\sqrt{\frac{50}{3}}$$
x 가 자연수가 되도록 하는 가장 작은 정수 x 를 구하여라.

$$\triangleright$$
 정답: $x=6$

$$\frac{50}{3}x = \frac{2 \times 5^2 \times x}{3}$$
 이므로 $x = 2 \times 3 = 6$ 이다.

 $(3) - \sqrt{0.01} = -0.1$

①
$$\sqrt{8}$$

①
$$\sqrt{8}$$
 ④ $\sqrt{3} + 3$

②
$$\sqrt{10}$$
 ③ $\sqrt{3} - 1$

 $\bigcirc \sqrt{0.01}$

- **4.** 다음 중 무리수에 대한 설명이 아닌 것을 <u>모두</u> 고르면? (정답 2개)
 - ① 순환하지 않는 무한소수 ② 분수로 나타낼 수 없는 수
 - ③ 유한소수
 ④ 순환소수

 ⑤ 유리수가 아닌 수

③ ④ 유한소수, 순환소수는 유리수이다.

5. 다음 중 제곱근을 나타낼 때, 근호를 사용하여 나타내야만 하는 것을 모두 고르면?

① $\sqrt{36}$ ② 169 ③ 3.9 ④ $\frac{98}{2}$ ⑤ 0.4

①
$$(\sqrt{36} \text{ 의 제곱근}) = 6 \text{ 의 제곱근은 } \pm \sqrt{6}$$

② $169 = 13^2 \text{ 이므로 } 169 \text{ 의 제곱근은 } \pm 13$
③ $3.\dot{9} = \frac{36}{9} = 4 \text{ 이므로 } 3.\dot{9} \text{ 의 제곱근은 } \pm 2$
④ $\frac{98}{2} = 49 \text{ 이므로 } \frac{98}{2} \text{ 의 제곱근은 } \pm 7$

⑤ 0.4 의 제곱근은 $\pm \sqrt{0.4}$

- 6. 다음 중 옳은 것은?
 - ① $\sqrt{10}$ 은 $\sqrt{2}$ 의 5 배이다.
 - ② 25 의 제곱근은 5 이다.
 - ③ $-\sqrt{(-3)^2}$ 은 -3 이다.
 - ④ √16 의 제곱근은 ±4 이다.
 - ⑤ -8 의 음의 제곱근은 √8 이다.

해설

- ① $\sqrt{10}$ 은 $\sqrt{2}$ 의 $\sqrt{5}$ 배이다.
- ② 25 의 제곱근은 ±5 이다.
- ④ $\sqrt{16}$ 의 제곱근은 ± 2 이다.
- ⑤ 음수의 제곱근은 없다.

7. -1 < a < 2 일 때, $\sqrt{(a+1)^2} + \sqrt{(a-2)^2} + a - 3$ 을 간단히 하면?

(3) 0

(2) 3a - 4

(4)
$$a-6$$
 (5) $3a+1$

8. 다음 5 개의 수 A, B, C, D, E 가 정수가 되는 수 중 가장 작은 자연수를 a, b, c, d, e 라 한다. 다음 중 <u>옳은</u> 것은?

$$A = \sqrt{4+a} , \quad B = \sqrt{5^2 + b}$$

$$C = \sqrt{5^2 \times 3^3 \times c} , \quad D = \sqrt{160 + 2d}$$

(1)
$$a < b < c < d$$
 (2) $a < c < b < d$ (3) $b < a < d < c$

$$(4) c < d < a < b$$
 $(5) c < a < b < d$

해설

정수가 되려면 근호 안의 수가 제곱수가 되어야 한다. A 에서 4+a=9 일 때 a 가 가장 작은 수이면서 제곱수를 만든다.

$$\therefore a = 5$$

$$A = 5$$
 B 에서 $5^2 + b = 36$ 일 때 B 가 가장 작은 수이면서 제곱수를 만든다.

$$\therefore b = 11$$
 C 에서 $5^2 \times 3^3 \times c$ 가 제곱수가 되려면 가장 작은 수는 $c = 3$ 일

때 이다. D 에서 $160 + 2d = 196 (= 14^2)$ 일 때 d 가 가장 작은 수이면서 근호 안이 제곱수가 된다.

$$d = 18$$

$$\therefore c < a < b < d$$

- 9. 다음 중 옳지 <u>않은</u> 것은?
 - ① 두 정수 0과 1 사이에는 무수히 많은 유리수가 있다.
 - ② 두 무리수 $\sqrt{9}$ 와 $\sqrt{16}$ 사이에는 무수히 많은 무리수가 있다.
 - ③ 수직선은 실수에 대응하는 점들로 완전히 메워져 있다.
 - ④ 모든 실수는 수직선 위에 나타낼 수 있다.
 - ⑤ 서로 다른 무리수 사이에는 무수히 많은 정수들이 있다.

_ 해설

정수는 서로 다른 두 수 사이에 유한개 존재한다.

10. 다음 세 수를 큰 수부터 차례로 나열한 것으로 옳은 것은?

$$\frac{\sqrt{3}}{6}$$
, $\sqrt{\frac{3}{121}}$, $\sqrt{0.75}$

①
$$\sqrt{\frac{3}{121}}$$
, $\sqrt{0.75}$, $\frac{\sqrt{3}}{6}$

$$3 \frac{\sqrt{3}}{6}, \sqrt{\frac{3}{121}}, \sqrt{0.75}$$

$$6 \times \sqrt{121}$$

 $5 \times \sqrt{0.75}, \sqrt{\frac{3}{121}}, \frac{\sqrt{3}}{6}$

$$\frac{\sqrt{3}}{6}$$
 $\boxed{2} \quad \frac{\sqrt{3}}{6}, \quad \sqrt{0.75}, \quad \sqrt{\frac{3}{121}}$
 $\boxed{75}$
 $\boxed{4} \quad \sqrt{0.75}, \quad \frac{\sqrt{3}}{6}, \quad \sqrt{\frac{3}{121}}$

$$\sqrt{\frac{3}{121}} = \sqrt{\frac{3}{11^2}} = \frac{\sqrt{3}}{11} ,$$

$$\sqrt{0.75} = \sqrt{\frac{75}{100}} = \sqrt{\frac{5^2 \times 3}{10^2}} = \frac{5\sqrt{3}}{10} = \frac{\sqrt{3}}{2} ,$$

$$\frac{\sqrt{3}}{2} > \frac{\sqrt{3}}{6} > \frac{\sqrt{3}}{11}$$

11. 다음 식을 간단히 하여라.

$$-\sqrt{\left(\frac{1}{2}\right)^2} - \sqrt{\left(-\frac{1}{4}\right)^2} \times \sqrt{0.4^2} - \sqrt{(-1.2)^2}$$

해설
$$-\sqrt{\left(\frac{1}{2}\right)^2} - \sqrt{\left(-\frac{1}{4}\right)^2} \times \sqrt{0.4^2} - \sqrt{(-1.2)^2}$$

$$= -\frac{1}{2} - \frac{1}{4} \times 0.4 - 1.2$$

= -0.5 - 0.1 - 1.2 = -1.8

12. 두 실수
$$a$$
, b 에 대하여 $a-b<0$, $ab<0$ 일 때, $\sqrt{a^2}+\sqrt{b^2}-\sqrt{(-a)^2}+\sqrt{(-b)^2}$ 을 간단히 한 것은?

① 0 ②
$$2a$$
 ③ $a-b$ ④ $2b$ ⑤ $a+b$

$$ab < 0$$
 이면 a 와 b 의 부호가 다르다.
 $a-b < 0$ 이면 $a < b$ 이므로 $a < 0$, $b > 0$ 이다.
 $a < 0$ 이므로 $\sqrt{a^2} = -a$, $b > 0$ 이므로 $\sqrt{b^2} = b$
 $a < 0$ 이므로 $\sqrt{(-a)^2} = \sqrt{a^2} = -a$
 $b > 0$ 이므로 $\sqrt{(-b)^2} = \sqrt{b^2} = b$
따라서
 $\sqrt{a^2} + \sqrt{b^2} - \sqrt{(-a)^2} + \sqrt{(-b)^2}$
 $= -a + b - (-a) + b$
 $= 2b$

해설

13. 다음 두 수
$$6$$
 과 15 사이에 있는 정수 n 에 대하여 \sqrt{n} 이 무리수인 n 의 개수는?

 $7 \sim 14$ 까지의 정수 중 $3^2 = 9$ 제외.

7, 8, 10, 11, 12, 13, 14 (7 개)

① 11 개 ② 10 개 ③ 9 개 ④ 8 개

14. 주사위를 두 번 던져서 나오는 눈의 수 중에 큰 것을 a , 작은 것을 b 라고 하자. 0 < √|b-a| < 2 를 만족하는 순서쌍 (a, b) 는 모두 몇 개인지 구하여라.
 □ 개

큰 것이 a 이므로 b-a<0∴ -4 < b-a < 0, b-a = -3, -2, -1

$$\therefore -4 < b - a < 0, b - a = -3$$

 $b - a = -3$ 일 때,
 $(a, b) = (4, 1), (5, 2), (6, 3)$

b-a=-2 일 때, (a, b)=(3, 1), (4, 2), (5, 3), (6, 4)b-a=-1 이 때

$$b-a=-1$$
 일 때,
 $(a, b)=(2, 1), (3, 2), (4, 3), (5, 4), (6, 5)$

15. 한 변의 길이가 9인 정사각형의 내부에 10 개의 점을 놓을 때, 두 점사이의 거리가 r이하인 두 점이 반드시 존재한다. 이때 r의 최댓값을 구하여라.

답:

정답: 3√2

해설

한 변의 길이가 9인 정사각형의 내부를 한 변의 길이가 3인 작은 정사각형 9개로 나누고 작은 정사각형 한 개안에 하나의 점을 놓는다고 할 때, 모두 10개의 점을 놓아야 하므로 반드시 2개의 점은 한 개의 작은 정사각형 안에 들어간다. 한 변의 길이가 3인 작은 정사각형 안에 2개의 점을 놓을 때 두 점 사이의 거리의 최댓값은 작은 정사각형의 대각선의 길이 이므로 3√2 이므로 r = 3√2