x - y = 1을 만족하는 모든 실수 x, y에 대하여 등식 $3x^2 - 5x + 1 = 1$ $av^2 + bv + c$ 이 항상 성립할 때, a+b+c의 값은? (단, a,b,c는 상수) (2) 2 (3) 3 **(4)** 4 (5) 5

임의의 실수 x에 대하여 $x^2-3x+2=a+bx+cx(x-1)+dx(x-1)(x-2)$ 가 항상 성립할 때, a+b+c+d의 값을 구하면? (단, a, b, c, d는 상수)

3. $\frac{x+1}{2} = \frac{y-1}{3}$ 을 만족하는 모든 실수 x, y에 대하여 항상 ax+by+5 =0이다. 이때 a+b의 값을 구하라.

🔰 답:

 $(x+1)^5 = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$ 이 x에 대한 항등식일 때, $a_0 + a_1 + a_2 + a_3 + a_4 + a_5$ 의 값을 구하면?

③ 32

(4) 64

(5) 128

⁽²⁾ 16

5. 다항식 $x^3 - 2x^2 + 5x - 6$ 을 일차식 x - 2로 나눌 때의 나머지는? 3 2 4 3

① 0 ② 1

- 6. 다항식 f(x)를 x-2로 나눈 몫을 Q(x)라 할 때, 나머지는?
 - ① f(2) ② f(-2) ③ f(2) + Q(2)

 $\bigcirc Q(-2)$

Q(2)

- 다항식 $f(x) = x^3 + 3x^2 + kx k$ 가 x + 1로 나누어떨어지도록 상수 k의 값을 정하면?

x에 대한 다항식 $x^3 - 2x^2 - px + 2$ 가 x - 2로 나누어떨어지도록 상수 p의 값을 정하면?

① 1 ② -1 ③ 2 ④ -2 ⑤ 3

- 9. $\frac{2x+1}{x^3-1} = \frac{a}{x-1} + \frac{bx+c}{x^2+x+1}$ \uparrow $x \neq 1$ 인 모두 실수 x에 대해 항상 성립 하도록 a, b, c 를 구할 때, a+b+c 의 값은?

달: c =

11. (x+y)a - (x-y)b - (y-z)c - 4z = 0이 x, y, z의 값에 관계없이 항상 성립할 때, 곱 abc를 구하면?

③ 16

(4) 32

(5) 64

12. 다항식 $6x^3 - 7x^2 + 17x - 3 = 3x - 2$ 로 나눈 몫을 Q(x), 나머지를 R 이라 할 때, Q(1) + R의 값을 구하여라.

> 답:

13. 다항식 $x^3 + ax - 8 = x^2 + 4x + b$ 로 나눌 때, 나머지가 3x + 4가 되도록 상수 a + b의 값을 정하여라. > 답:

14. $x^3 - 2x^2 + a$ 가 x + 3 로 나누어 떨어지도록 상수 a 의 값을 구하여라. **)** 답: a =

15. 다항식 f(x)를 두 일차식 x-1, x-2로 나눌 때의 나머지는 각각 2, 1이다. 이때, f(x)를 $x^2 - 3x + 2$ 로 나눌 때 나머지는?

①
$$x + 3$$
 ② $-x + 3$ ③ $x - 3$
④ $-x - 3$ ⑤ $-x + 1$

16. 다항식 $ax^3 + bx^2 - 4$ 가 $x^2 + x - 2$ 로 나누어 떨어지도록 a, b를 정할 때, *a* 와 *b* 의 곱을 구하면? 3**(4)** 4

17. 다항식 $2x^3 + ax^2 + bx + 3$ 이 다항식 $2x^2 - x - 3$ 으로 나누어 떨어질 때, a+b 의 값은 ?

① 3 ② 1 ③ -1 ④ -2 ⑤ -5

18. $\frac{2x + ay - b}{x - y - 1}$ 가 $x - y - 1 \neq 0$ 인 어떤 x, y의 값에 대하여도 항상 일정한 값을 가질 때, a - b의 값을 구하여라.

▶ 답:

19. 다항식 f(x)를 x-2, x-3 으로 나눌 때의 나머지가 각각 3,7이라고 할 때, f(x)를 (x-2)(x-3)으로 나눌 때의 나머지는? (1) 2x + 3(2) 3x - 4(3) 4x - 5

6x - 7

9 5x + 6

다항식 f(x)를 x-3으로 나누었을 때의 몫이 Q(x), 나머지가 1이고, 또 Q(x)를 x-2로 나누었을 때의 나머지가 -2이다. f(x)를 x-2로 나누었을 때의 나머지를 구하면? 3(4) 4

21.	다항식 $f(x)$ 를 x^2-4 로 나누었을 때의 나머지가 $-x+4$ 이다. 다항식				
	$f(x+1)$ 을 $x^2 + 2x - 3$ 으로 나누었을 때의 나머지를 구하면?				
	① $2x + 1$	② $-x+3$	③ $x-1$		

 \bigcirc 2*x* – 3

\bigcirc -2	② -1	3 0	4 1	⑤ 2

23. $y = kx^2 + (1-2k)x + k - 1$ 의 그래프는 k에 관계없이 항상 한 정점 A 를 지난다. B의 좌표를 B(b,1)라 할 때, \overline{AB} 의 길이가 $\sqrt{2}$ 가 되도록 하는 b의 값들의 합을 구하면?

(3) -2

(4) -3

x에 대한 다항식 P(x)를 x-2로 나눈 나머지가 5이고. 그 몫을 다시 x + 3으로 나눈 나머지가 3일 때, xP(x)를 x + 3으로 나눈 나머지를

- **.** 답:
- 구하여라

 x^{30} 을 x-3으로 나눌 때 몫을 Q(x), 나머지를 R라 하면 Q(x)의 계수의 총합(상수항 포함)과 R과의 차는?

① $\frac{1}{2}(3^{29}+1)$ $2 \frac{1}{2} \cdot 3^{30}$ $3 \frac{1}{2}(3^{30}-1)$ \bigcirc $\frac{1}{2}(3^{29}-1)$

 $4 \frac{1}{2}(3^{30}+1)$