
- 1. 다음 그림에서 \overline{AC} 의 길이는 ?
 - ① 2 ② $\sqrt{5}$ ③ $\sqrt{6}$ (4) $\sqrt{7}$ (5) $2\sqrt{2}$

 $\overline{\mathrm{AC}} = \sqrt{1^2 + 1^2 + 1^2 + 1^2 + 1^2} = \sqrt{5}$ 이다.

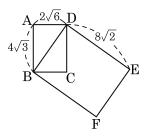
 $\overline{OE} = \sqrt{3^2 + 3^2 + 3^2 + 3^2 + 3^2} = 3\sqrt{5}$ 따라서 $\triangle OEG$ 의 넓이는 $\frac{1}{2} \times 3\sqrt{5} \times 3 = \frac{9\sqrt{5}}{2}$

3. 세 변의 길이가 $2\sqrt{14}$ cm, $4\sqrt{6}$ cm, $2\sqrt{38}$ cm 이고, $2\sqrt{7}$ cm, $6\sqrt{2}$ cm, 10 cm 인 두 직각삼각형의 넓이를 각각 구하여라.

답: <u>cm²</u>

답: <u>cm²</u>

ightharpoonup 정답: $8\sqrt{21}$ cm^2


ightharpoonup 정답: $6\sqrt{14}$ cm^2

 $(2\sqrt{38})^2=(2\sqrt{14})^2+(4\sqrt{6})^2$ 이므로 $2\sqrt{14}\,\mathrm{cm},\,4\sqrt{6}\,\mathrm{cm},\,2\sqrt{38}\,\mathrm{cm}$ 에서 가장 긴 변은 $2\sqrt{38}\,\mathrm{cm}$ 인 직 각삼각형이다.

넓이는 $\frac{1}{2} \times 2\sqrt{14} \times 4\sqrt{6} = 8\sqrt{21} \text{ (cm}^2)$ 이고, $(10)^2 = (2\sqrt{7})^2 + (6\sqrt{2})^2 \text{ 이므로}$

4. 다음 그림과 같이 직사각형 ABCD 의 대 각선을 한 변으로 하는 직사각형 BDEF 의 넓이는?

① 24 ② 48 ③ 72

496

⑤ 124

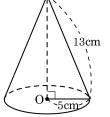
삼각형 ABD 에서 피타고라스 정리에 따라 $\sqrt{(2\sqrt{6})^2 + (4\sqrt{3})^2} = 6\sqrt{2}$ 따라서 직사각형 BDEF의 넓이는

 $6\sqrt{2} \times 8\sqrt{2} = 96$ 이다.

5. 대각선의 길이가 $9\sqrt{6}$ 인 정육면체의 부피를 구하여라.

답:

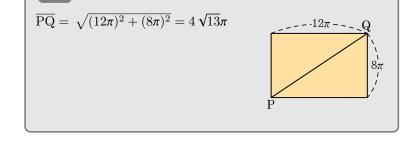
> 정답: 1458 √2


해설 한 모서리의 길이를 a라고 하면

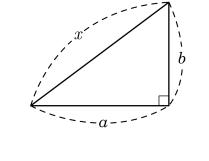
 $\sqrt{3}a = 9\sqrt{6}$ 이므로 $a = 9\sqrt{2}$ 따라서 정육면체의 부피는 $(9\sqrt{2})^3 = 1458\sqrt{2}$

- 6. 다음 그림과 같이 밑면의 원의 반지름의 길이가 $5\,\mathrm{cm}$ 이고, 모선의 길이가 $13\,\mathrm{cm}$ 인 원뿔의 높이 는?
 - \bigcirc 8 cm
- \bigcirc 9 cm
- $310\,\mathrm{cm}$

해설


원뿔의 높이 $h = \sqrt{13^2 - 5^2} = 12 (\text{cm})$ 이다.

7. 다음 그림과 같은 원기둥에서 점 P 에서 옆면을 따라 점 Q 에 이르는 최단 거리를 구하여라.


Q 8π P

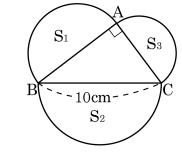
답:

ightharpoonup 정답: $4\sqrt{13}\pi$

8. 이차방정식 $x^2 - 14x + 48 = 0$ 의 두 근이 직각삼각형의 빗변이 아닌 두 변의 길이라고 할 때, 이 직각삼각형의 빗변의 길이는?

① 8 ② 8

310

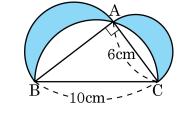

4 11

⑤ 12

해설 $x^2 - 14x + 48 = (x - 6)(x - 8) = 0, x = 6, 8$

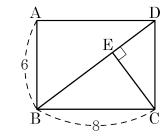
빗변이 아닌 두 변의 길이가 6, 8 이므로 피타고라스 정리에 따라 $x^2 = 6^2 + 8^2 = 100$ x > 0 이므로 x = 10 이다

9. 그림과 같이 빗변의 길이가 $10 \mathrm{cm}$ 인 $\Delta \mathrm{ABC}$ 의 각 변을 지름으로 하는 반원의 넓이를 각각 S_1 , S_2 , S_3 라고 할 때, $S_1+S_2+S_3$ 의 값을 구하면?


 $425\pi \text{cm}^2$

① $10\pi\mathrm{cm}^2$

- ② $15\pi \text{cm}^2$ ③ $30\pi \text{cm}^2$
- $3 20\pi \text{cm}^2$


 $S_1 + S_3 = S_2$ $S_1 + S_2 + S_3 = 2S_2$ $\therefore 2 \times \pi \times 5^2 \times \frac{1}{2} = 25\pi \text{ (cm}^2\text{)}$ ${f 10}$. 다음 그림에서 각 반원은 직각삼각형의 각 변을 지름으로 한다. ${f \overline{AC}}$ = $6\,\mathrm{cm}$, $\overline{\mathrm{BC}}=10\,\mathrm{cm}$ 일 때, 색칠한 부분의 넓이는?

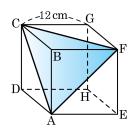
- $424\,\mathrm{cm}^2$
- $2 18 \,\mathrm{cm}^2$ $\odot 32 \, \mathrm{cm}^2$
- $3 20 \,\mathrm{cm}^2$

 $\triangle ABC$ 에서 $\overline{AB}^2 = \overline{BC}^2 - \overline{AC}^2 = 10^2 - 6^2 = 64$ $\therefore \overline{AB} = \sqrt{64} = 8 \text{ (cm)} \ (\because \overline{AB} > 0 \)$ 색칠한 부분의 넓이를 S 라고 하면 $S = \frac{\pi \times 4^2}{2} + \frac{\pi \times 3^2}{2} + \frac{6 \times 8}{2} - \frac{\pi \times 5^2}{2} = 24 \text{ (cm}^2)$

11. 다음 그림의 직사각형 ABCD 에서 $\overline{\mathrm{BE}}$ 의 길이를 구하면?

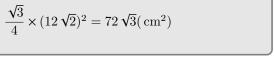
- $\frac{3}{5}$

$$\overline{BD} = \sqrt{8^2 + 6^2} = 10$$

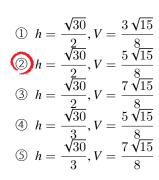

$$\Delta BCD 의 넓이는 \frac{1}{2} \times 10 \times \overline{CE} = \frac{1}{2} \times 6 \times 8 : \overline{CE} = \frac{24}{5} \Delta CBE$$
이서
$$\overline{BE} = \sqrt{8^2 - \left(\frac{24}{5}\right)^2}$$

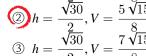
$$= \sqrt{64 - \frac{576}{25}}$$

$$= \sqrt{\frac{1024}{25}}$$

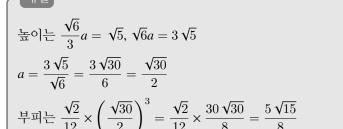

$$= \frac{32}{5}$$

- 12. 한 변의 길이가 $12 \, \mathrm{cm}$ 인 정육면체를 다음과 같이 자를 때, ΔAFC 의 넓이를 구하면?
 - $2 73\sqrt{3} \text{ cm}^2$
 - $\bigcirc 72\sqrt{3}\,\mathrm{cm}^2$ $3 74 \sqrt{3} \text{ cm}^2$
- $4.75\sqrt{3}\,\mathrm{cm}^2$
- $5 76 \sqrt{3} \text{ cm}^2$

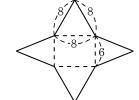


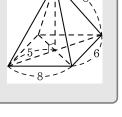

 $\overline{AC} = 12\sqrt{2}$

 \triangle AFC 는 한 변의 길이가 $12\sqrt{2}$ 인 정삼각형이므로 넓이는

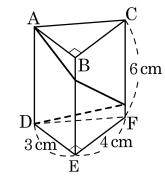

- 13. 다음 정사면체의 한 변의 길이 x와 부피V를 각각 구하면?

$$\text{ (4) } h = \frac{\sqrt{30}}{3}, V = \frac{5\sqrt{1}}{8}$$


$$\text{ (7) } \sqrt{1}$$

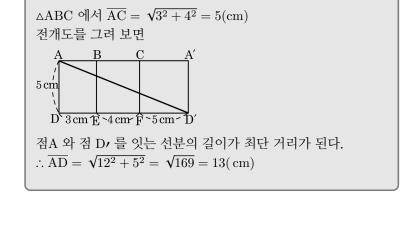

$$a = \frac{3\sqrt{5}}{\sqrt{6}} = \frac{3\sqrt{30}}{6} = \frac{\sqrt{30}}{2}$$

$$\stackrel{\text{He}}{=} \vec{\Pi} \stackrel{\text{L}}{=} \frac{\sqrt{2}}{12} \times \left(\frac{\sqrt{30}}{2}\right)^3 = \frac{\sqrt{2}}{12} \times \frac{30\sqrt{30}}{8} = \frac{5\sqrt{15}}{8}$$

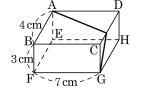

- 14. 다음 그림과 같은 전개도로 사각뿔을 만들 때, 사각뿔의 부피는?
 - ① 24 ② $50\sqrt{3}$
 - (4) $64\sqrt{2}$ (5) $48\sqrt{39}$
- $\boxed{3}16\sqrt{39}$

사각뿔의 높이는 $\sqrt{8^2-5^2}=\sqrt{39}$ 이다. 따라서 부피는 $6\times 8\times \sqrt{39}\times \frac{1}{3}=16\sqrt{39}$ 이다.

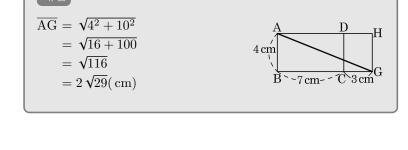
15. 다음 그림은 밑면이 직각삼각형인 삼각기둥이다. 꼭지점 A 에서 모서리 BE 와 CF 를 지나 꼭짓점 D 에 이르는 최단 거리는?

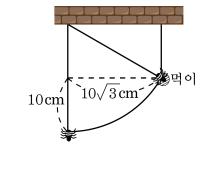


- $4 13 \sqrt{2} \text{ cm}$
- ② $12\sqrt{2} \text{ cm}$ ③ 15 cm
- ③13 cm

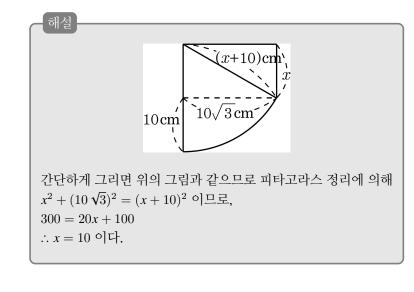

해설

 \bigcirc 12 cm

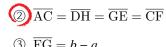

. 9 10


16. 다음 그림과 같은 직육면체에서 점 A 를 출발하여 모서리 CD 를 지나 점 G 에 이르는 최단 거리를 구하여라.

답:
 > 정답: 2√29

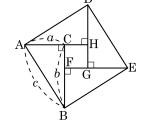


17. 천정에 매달려 있던 거미가 먹이를 먹기 위해 그림과 같이 움직였습니다. 먹이가 천정으로부터 떨어져 있는 거리는?



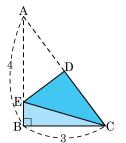
① 6 cm ② 7 cm ③ 8 cm ④ 9 cm

⑤10 cm



- 18. 다음 그림은 직각삼각형 ABC와 합동인 삼 각형을 붙여 정사각형 ABED를 만든 것이 다. 다음 중 옳지 <u>않은</u> 것은?
 - ① $\triangle ABC \equiv \triangle EDG$

- $\overline{\text{FG}} = b a$
- $\Delta {\rm ABC} + \Delta {\rm EFB} + \Delta {\rm GDE}$ ⑤ □CFGH는 정사각형


 $\textcircled{4} \ \Box ABED = \Box CFGH + \triangle AHD +$

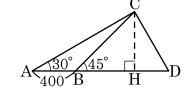
$\ \, @ \ \, \overline{AC} = \overline{DH} = \overline{GE} = \overline{BF}, \, \overline{CF} = \overline{BC} - \overline{BF}$

해설

- 19. 다음 그림과 같이 $\angle B = 90^{\circ}$ 인 직각삼각형 ABC 의 빗변 AC 를 두 점 A 와 C 가 겹쳐지 도록 접었을 때, △CDE 의 둘레의 길이는?

 ΔABC 가 직각삼각형이므로 $\overline{AC}^2=4^2+3^2, \, \overline{AC}=5 \,$ 이다. $\overline{EB}=x$ 라 두면 $\overline{AE}=\overline{EC}=4-x \,$ 이고

ΔEBC 가 직각삼각형이므로


 $(4-x)^2 = x^2 + 3^2, x = \frac{7}{8}$ 이다. $\triangle ADE$ 가 직각삼각형이므로

$$\frac{2\pi DL}{DE^2}$$
 $\left(25\right)^2$ $\left(5\right)^2$

 $\overline{\mathrm{DE}}^2 = \left(\frac{25}{8}\right)^2 - \left(\frac{5}{2}\right)^2, \ \overline{\mathrm{DE}} = \frac{15}{8}$ 이다.

따라서
$$\triangle CDE$$
 의 둘레는 $\frac{15}{8} + \frac{25}{8} + \frac{5}{2} = \frac{15}{2}$ 이다.

20. 다음 조건을 만족하는 \overline{CH} 의 길이를 구하면?

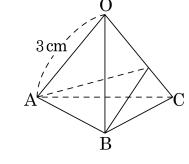
- $\ \, \ \, \overline{AB}=400,\, \angle A=30\,^{\circ},\, \angle CBH=45\,^{\circ}$ $\quad \ \, \underline{ } \quad \, \underline{ \mathrm{CH}} \bot \overline{\mathrm{AH}}$

- 3 200($\sqrt{3} + 1$)

① $50(\sqrt{3}+1)$ ② $100(\sqrt{3}+1)$

④ $300(\sqrt{3}+1)$ ⑤ $350(\sqrt{3}+1)$

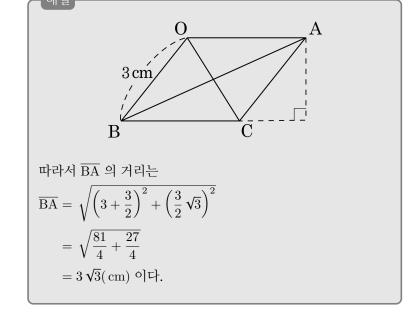
 $\overline{\mathrm{CH}} = x$ 라 하면 $\overline{\mathrm{BH}} = x$


 $\triangle ACH$ 에서 $\overline{CH}: \overline{AH} = 1: \sqrt{3}$

 $x: (400+x) = 1: \sqrt{3}$

 $400 + x = \sqrt{3}x$ $(\sqrt{3} - 1)x = 400$

 $x = 200(\sqrt{3} + 1)$


 ${f 21}$. 다음 그림과 같이 한 모서리의 길이가 $3\,{
m cm}$ 인 정사면체의 꼭짓점 A 에서 겉면을 따라 \overline{OC} 를 지나 점 B 에 이르는 최단 거리를 구하여라.

 $\underline{\mathrm{cm}}$

▷ 정답: 3√3cm

답:

