- 1. 다음 중 x 가 2 의 제곱근임을 나타내는 식은?

 - ① $x = \sqrt{2}$ ② $x = 2^2$
- $3x^2 = 2$
- ① $2 = \sqrt{x}$ ③ $x = \sqrt{2^2}$

x 가 a 의 제곱근일 때(단, $a \ge 0$) $x^2 = a$

2. $\sqrt{81}$ 의 양의 제곱근을 a , $(-4)^2$ 의 음의 제곱근을 b 라고 할 때, a-b 의 값은?

① -7 ② -1 ③ 1 ④7 ⑤ 13

해설

 $\sqrt{81}=9$ 의 제곱근은 ± 3 이므로 양의 제곱근 a=3 $(-4)^2=16$ 의 제곱근은 ± 4 이므로 음의 제곱근 b=-4 $\therefore a-b=3-(-4)=7$

- 3. 다음 중 $\sqrt{45x}$ 가 자연수가 되게 하는 x 의 값으로 옳지 <u>않은</u> 것을 모두 고르면?
 - ① $\frac{1}{5}$ ② $\frac{9}{5}$ ③ 25 ④ 45 ⑤ 75

 $\sqrt{45x} = \sqrt{3^2 \times 5 \times x}$ ③ $\sqrt{3^2 \times 5^3} = 3 \times 5 \times \sqrt{5} = 15 \sqrt{5}$ 가 되어 자연수가 되지 못한다.

해설

⑤ $\sqrt{3^3 \times 5^3} = 3 \times 5 \times \sqrt{3 \times 5} = 15\sqrt{15}$ 가 되어 자연수가 되지 못한다.

- 4. $\frac{12\sqrt{a}}{\sqrt{12}}$ 의 분모를 유리화하였더니 $2\sqrt{6}$ 이 되었다. 이 때, 자연수 $\frac{1}{\sqrt{a}}$ 의 값은?
 - ① $\frac{\sqrt{2}}{4}$ ② $\frac{\sqrt{2}}{3}$ ③ $\frac{\sqrt{2}}{2}$ ④ $\sqrt{2}$ ⑤ $2\sqrt{2}$

$$\frac{12\sqrt{a}}{\sqrt{12}} = \frac{12\sqrt{a}}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{12\sqrt{3a}}{6} = 2\sqrt{3a} = 2\sqrt{6}$$
$$3a = 6 \text{ and } a = 2$$
$$\therefore \frac{1}{\sqrt{a}} = \frac{1}{\sqrt{2}} = \frac{1 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$3a = 6$$
이므로 $a = 2$

- 다음 중 $\sqrt{2}$ 와 $\sqrt{7}$ 사이에 있는 무리수가 <u>아닌</u> 것은? (단, $\sqrt{2}=1.414$ **5.** , $\sqrt{7} = 2.646$)
 - ① $\sqrt{2} + 1$ ② $\sqrt{5}$

- (4) $\sqrt{7} \sqrt{2}$ (5) $\pi \sqrt{2}$

- $\sqrt{5}$ 의 소수 부분을 a 라고 할 때, $\sqrt{500}$ 을 a 를 사용하여 나타내면? **6.**
 - ① 10a + 10
- ② 10a + 20
- $\Im 10a$
- 4000

해설

 $2<\sqrt{5}<3$ 이므로 정수 부분은 2, 소수 부분 $a=\sqrt{5}$ – 2 $\therefore \sqrt{5} = a + 2$

 $\sqrt{500} = 10\sqrt{5} = 10(a+2) = 10a + 20$

다음 세 식에서 x 에 대한 일차식을 공통인 인수로 가질 때, k 의 값을 7. 구하여라.

```
6x^2 + x - 1, 9x^2 - 1, 3x^2 + kx - 2
```

▶ 답:

> 정답: k = 5

해설

 $6x^2 + x - 1 = (2x + 1)(3x - 1)$

 $9x^2 - 1 = (3x + 1)(3x - 1)$ 공통인 인수는 3*x* – 1 이다. $3x^2 + kx - 2 = (3x - 1)(x + 2) = 3x^2 + 5x - 2$

 $\therefore k = 5$

x(x+1)(x+2)(x+3)+1 을 인수분해 하는 과정이다. () 안에 들어갈 8. 식이 옳지 <u>않은</u> 것은?

$$x(x+1)(x+2)(x+3) + 1$$

= $x(①) \times (x+1)(②) + 1$
= $(x^2 + 3x)(③) + 1$
 $(④) = A$ 라 하면
 $A^2 + 2A + 1 = (A+1)^2 = (⑤)^2$

- ① x+3 ② x+2 ③ x^2+3x+2

 $4 x^2 + 3x$

해설

- 9. a > 0 일 때, 다음 중 옳은 것은?
- $(-\sqrt{3a})^2 = 3a$

② $-(-\sqrt{3a})^2 = -3a$ ③ $\sqrt{(-a)^2} = a$

$$\sqrt{(-5a)^2} =$$

10. $\sqrt{43-a} = 4$ 를 만족하는 a 의 값을 구하여라.

답:

해설

▷ 정답: a = 27

 $\sqrt{43-a} = \sqrt{16}, 43-a = 16, a = 27$

11. 0 < a < 1 일 때, $\sqrt{a^2} - \sqrt{(a-1)^2}$ 을 간단히 하면?

4 2a - 1 5 3

① 1

② -1 ③ 1 - 2a

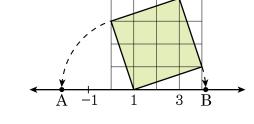
0 < a < 1 ||A| a > 0, a - 1 < 0 $\sqrt{a^2} - \sqrt{(a-1)^2} = a - \{-(a-1)\} = 2a - 1$

12. \sqrt{x} 이하의 자연수의 개수를 N(x) 라고 하면 $2<\sqrt{5}<3$ 이므로 N(5)=2 이다. 이 때, $N(8)+N(9)+\cdots+N(19)+N(20)$ 의 값을 구하여라.

 ► 답:

 ▷ 정답:
 43

• --


해설

 $\sqrt{9}=3, \ \sqrt{16}=4$ 이므로 $N\left(8\right)=2$

 $N(9) = N(10) = \cdots = N(15) = 3$ $N(16) = N(17) = \cdots = N(20) = 4$

 $\therefore N(8) + N(9) + \dots + N(19) + N(20) = 2 + 3 \times 7 + 4 \times 5 = 43$

13. 다음 중 아래 수직선에서의 점 A, 점 B의 좌표를 고르면?

- ① A :1 $\sqrt{10}$, A B :1 + $\sqrt{10}$ ② 점 A :1 + $\sqrt{10}$, 점 B :1 - $\sqrt{10}$
- ③ 점 A :1 + $\sqrt{10}$, 점 B :1 + $\sqrt{10}$ ④ 점 A :-1 - $\sqrt{10}$, 점 B :- $\sqrt{10}$
- ⑤ 점 A:1 $\sqrt{10}$, 점 B: $\sqrt{10}$

내부의 기울어진 정사각형의 넓이가 10 이므로 한 변의 길이는

해설

 $\sqrt{10}$ 이다.

14. 다음 제곱근표에서 $\sqrt{5.84}$ 의 값은 a이고, $\sqrt{b}=2.352$ 일 때, a+b 의 값은?

宁	0	1	2	3	4
5.5	2.345	2.347	2.349	2.352	2.354
5.6	2.366	2.369	2.371	2.373	2.375
5.7	2.387	2.390	2.392	2.394	2.396
5.8	2.408	2.410	2.412	2.415	2.417

① 7.217 ② 7.548 ③ 7.947 ④ 8.132 ⑤ 8.492

 $\sqrt{5.84} = 2.417$

해설

 $\sqrt{5.53} = 2.352$ ∴ a = 2.417, b = 5.53

 $\therefore a + b = 2.417 + 5.53 = 7.947$

15. $x^2 - y^2 + 10yz - 25z^2$ 을 인수분해하였더니 (ax + y + bz)(x - y + cz)가 되었다. 이때 a - b + c의 값은?

① 7

- ②11 ③ 16 ④ 32 ⑤ 64

$$x^2 - y^2 + 10yz - 25z^2 = x^2 - (y^2 - 10yz + 25z^2)$$

= $x^2 - (y - 5z)^2$
= $(x + y - 5z)(x - y + 5z)$ 이므로
 $a = 1, b = -5, c = 5$
 $\therefore a - b + c = 11$

$$\therefore a - b + c = 11$$

16. $a = \sqrt{3} + \sqrt{2}$, $b = \sqrt{3} - \sqrt{2}$ 일 때, $a^2 + b^2$ 의 값을 구하여라.

▶ 답:

▷ 정답: 10

$$a^{2} + b^{2} = (a+b)^{2} - 2ab$$

$$= (\sqrt{3} + \sqrt{2} + \sqrt{3} - \sqrt{2})^{2}$$

$$- 2(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})$$

$$= (2\sqrt{3})^{2} - 2 \times (3-2)$$

$$= 12 - 2$$

$$= 10$$

17.
$$x - \frac{1}{x} = 1$$
 일 때, $x^2 - \frac{1}{x^2}$ 의 값은?

 $\pm \sqrt{5}$ ② ± 4 ③ ± 1 ④ 2 ⑤ -4

ি ক্রাপ্র

$$\left(x + \frac{1}{x}\right)^2 = \left(x - \frac{1}{x}\right)^2 + 4 = 1 + 4 = 5$$

$$x + \frac{1}{x} = \pm \sqrt{5}$$

$$x^2 - \frac{1}{x^2} = \left(x - \frac{1}{x}\right)\left(x + \frac{1}{x}\right)$$

$$= 1 \times (\pm \sqrt{5}) = \pm \sqrt{5}$$

18. 다음을 계산하여라.
$$\sqrt{\left(\sqrt{13}-\sqrt{7}\right)^2} \ + \ \sqrt{\left(\sqrt{11}-2\sqrt{3}\right)^2} \ - \ \sqrt{\left(2\sqrt{3}-\sqrt{11}\right)^2} \ - \sqrt{\left(\sqrt{7}-\sqrt{13}\right)^2}$$

답:▷ 정답: 0

 $\sqrt{13} > \sqrt{7}$, $\sqrt{11} < \sqrt{12} = 2\sqrt{3}$ 이므로 $\sqrt{\left(\sqrt{13} - \sqrt{7}\right)^2} + \sqrt{\left(\sqrt{11} - 2\sqrt{3}\right)^2} - \sqrt{\left(2\sqrt{3} - \sqrt{11}\right)^2} - \sqrt{\left(\sqrt{7} - \sqrt{13}\right)^2}$ $= \left(\sqrt{13} - \sqrt{7}\right) - \left(\sqrt{11} - 2\sqrt{3}\right)$ $- \left(2\sqrt{3} - \sqrt{11}\right) + \left(\sqrt{7} - \sqrt{13}\right)$ = 0

19. $f(x) = \sqrt{x+2} - \sqrt{x+1}$ 일 때, $f(0)+f(1)+f(2)+\cdots+f(99)+f(100)$ 의 값을 구하면?

해설

① -1 ② $\sqrt{101} - 1$

 $\sqrt{3}\sqrt{102} - 1$ ⑤ $\sqrt{102}$

 $f(0) = \sqrt{2} - \sqrt{1} = -1 + \sqrt{2}$ $f(1) = \sqrt{3} - \sqrt{2} = -\sqrt{2} + \sqrt{3}$

 $f(2) = \sqrt{4} - \sqrt{3} = -\sqrt{3} + \sqrt{4} \cdots$ $f(99) = \sqrt{101} - \sqrt{100} = -\sqrt{100} + \sqrt{101}$ $f(100) = \sqrt{102} - \sqrt{101} = -\sqrt{101} + \sqrt{102}$

 $\therefore f(0) + f(1) + f(2) + \dots + f(99) + f(100)$ $= -1 + \sqrt{2} - \sqrt{2} + \sqrt{3} + -\sqrt{3} + \sqrt{4} + \cdots - \sqrt{100} + \sqrt{101} -$

 $\sqrt{101} + \sqrt{102}$ $= -1 + (\sqrt{2} - \sqrt{2}) + (\sqrt{3} - \sqrt{3}) + (\sqrt{4} + \dots - \sqrt{100}) + (\sqrt{101} - \sqrt{100}) + (\sqrt{100} - \sqrt{100}) + (\sqrt{$

 $\sqrt{101}) + \sqrt{102}$ $= -1 + (0) + (0) + (0) + \sqrt{102}$

 $= -1 + \sqrt{102}$

- **20.** $\sqrt{(-6)^2} + (-2\sqrt{3})^2 \sqrt{3}\left(\sqrt{24} \frac{3}{\sqrt{3}}\right) = a + b\sqrt{2}$ 의 꼴로 나타낼 때, a + b의 값은?(단, a, b는 유리수)

해설

 $6 + 12 - 6\sqrt{2} + 3 = 21 - 6\sqrt{2}$ ∴ a = 21, b = -6∴ a + b = 21 - 6 = 15

- **21.** a, b 가 유리수일 때, $(\sqrt{3}-1)a+2b=0$ 을 만족하는 a, b 의 값을 구하여라.
 - ▶ 답:
 - ▶ 답:
 - ➢ 정답: a = 0
 - **> 정답:** b = 0

동류항끼리 정리하면 $\sqrt{3}a + (-a + 2b) = 0$ 이므로 a = 0, b = 0

해설

22. 다음 빈칸에 반드시 음수가 들어가야 하는 것을 모두 고르면?

① ①, ⑩ ④ 心, 鬯 ② ¬, □, □ ③ @, □

③ つ,╚

(J) (E)

 $\bigcirc: 2^2 = 4$

해설

 $\bigcirc: 9^2 = 81$

 $(-3) \times 5 = -15$

23. x에 관한 이차식 $x^2 + 9x + k$ 가 (x + a)(x + b)로 인수 분해될 때, k의 최댓값을 구하여라. (단, a, b는 자연수)

▶ 답:

➢ 정답: 20

해설

a+b=9가 되는 경우는 (1,8), (2,7), (3,6), (4,5) $\therefore (k$ 의 최댓값) = $4 \times 5 = 20$ **24.** $f(x) = x^2 - 8x - 48$, f(x)가 40의 약수를 인수를 가질 때, 자연수 x의 최댓값을 구하여라.

▶ 답:

▷ 정답: 52

 $f(x) = x^2 - 8x - 48 = (x+4)(x-12)$ 이고

해설

40 의 약수는 1, 2, 4, 5, 8, 10, 20, 40이다. $f(x) = x^2 - 8x - 48 = (x+4)(x-12) 이므로$ x+4 또는 x-12 가 40 의 약수가 되어야 한다.이때, 자연수 x 가 최댓값을 가지려면, x-12=40 일 때이므로 x=52

25. $1^2 - 2^2 + 3^2 - 4^2 + \dots + 15^2 - 16^2$ 의 값을 구하여라.

▶ 답:

▷ 정답: -136

 $(1-2)(1+2) + (3-4)(3+4) + (5-6)(5+6) + \dots + (15-16)(15+16)$ $= -(1+2+3+4+5+\cdots+15+16)$

 $= -(17 \times 8)$ = -136

해설