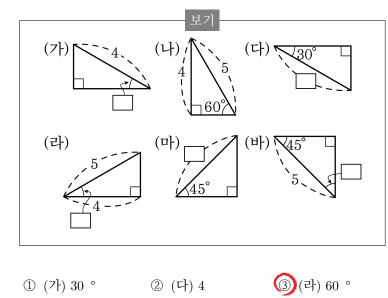
1. 다음 삼각형 중에서 (가)와 (다), (나)와 (라), (마)와 (바)가 서로 합동이다. 빈 칸에 들어갈 숫자로 옳지 <u>않은</u> 것을 모두 고르면?

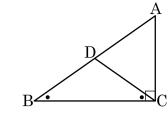


④ (□[†]) 5

해설

- ③(叶) 55°
- -
- ③ (라) 30° ⑤ (바) 45°

2. 다음은 직각삼각형 ABC 에서 \overline{AB} 위의 $\angle B = \angle BCD$ 가 되도록 점 D 를 잡으면 $\overline{AD} = \overline{BD} = \overline{CD}$ 임을 증명하는 과정이다. (가)~(마) 에 들어갈 내용으로 알맞은 것은?



∠B = (가) 이므로 ΔBCD 는 이등변삼각형이다.
따라서 BD = (나) 이다.
삼각형 ABC 에서 ∠A + ∠B + 90° = 180° 이므로 ∠A = 90° − ∠B 이다.
∠ACD + (다) = ∠ACB 에서 ∠ACB 가 90° 이므로
∠ACD = 90° − (라) 이다.
그런데 ∠B = (마) 이므로 ∠A = ∠ACD 이다.
따라서 ΔACD 는 이등변삼각형이므로 ĀD = CD 이다.
∴ BD = CD = ĀD 이다.

④ (라) : ∠BCD ⑤ (마) : ∠ABC

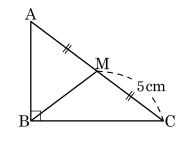
① $(가) : \angle ADC$ ② $(나) : \overline{BC}$ ③ $(다) : \angle BDC$

 $\angle B = \angle BCD$ 이므로 $\triangle BCD$ 는 이등변삼각형이다. 따라서 $\overline{BD} = \overline{CD}$ 이다. 삼각형 ABC 에서 $\angle A + \angle B + 90^\circ = 180^\circ$ 이므로 $\angle A = 90^\circ - \angle B$

해설

이다.
∠ACD + ∠BCD = ∠ACB 에서 ∠ACB 가 90° 이므로 ∠ACD = 90° - ∠BCD 이다.
그런데 ∠B = ∠BCD 이므로 ∠A = ∠ACD 이다.
따라서 △ACD 는 이등변삼각형이므로 $\overline{AD} = \overline{CD}$ 이다.
∴ $\overline{BD} = \overline{CD} = \overline{AD}$ 이다.

3. 다음 그림과 같은 직각삼각형 ABC 에서 $\overline{\rm CM}=5{
m cm}$ 이고 점 M이 삼각형의 외심일 때, $\overline{\rm BM}$ 의 길이는?



① 1cm

② 2cm

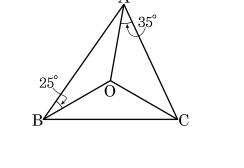
③ 3cm

④ 4cm

⑤5cm

직각삼각형의 외심은 빗변의 중점이므로 $\overline{\mathrm{AM}} = \overline{\mathrm{CM}} = \overline{\mathrm{BM}}$

이다, 따라서 $\overline{\mathrm{CM}} = 5\mathrm{cm}$ 이므로 $\overline{\mathrm{CM}} = \overline{\mathrm{BM}} = 5\mathrm{cm}$ 이다. **4.** 다음 그림에서 점 O는 ΔABC의 외심이다. $\angle OCB$ 의 크기는?



① 20° ② 25°

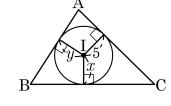
③30°

④ 35° ⑤ 40°

 $\angle OAC + \angle OBA + \angle OCB = 90^{\circ}$

 $\therefore \angle \text{OCB} = 90\,^{\circ} - 35\,^{\circ} - 25\,^{\circ} = 30\,^{\circ}$

5. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. x와 y의 길이의 차를 구하여라.



답:

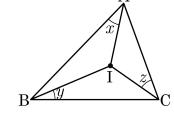
▷ 정답: 0

해설

삼각형의 내심에서 세 변에 이르는 거리는 같다.

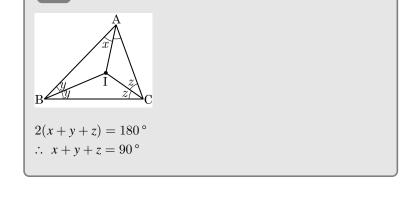
 $\therefore x - y = 0$

6. 다음 그림에서 점 I가 \triangle ABC의 내심일 때, $\angle x + \angle y + \angle z = ($) ° 이다. () 안에 알맞은 수를 구하여라.

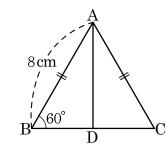


 ► 답:

 ▷ 정답:
 90



7. 다음 그림에서 $\overline{AB} = \overline{AC} = 8 \mathrm{cm}$ 이고, 점 A 에서 내린 수선과 \overline{BC} 와의 교점을 D라 하자. $\angle ABC = 60\,^{\circ}$ 일 때, \overline{BD} 의 길이는?



① 2cm

② 3cm

3 4cm

④ 5cm

⑤ 6cm

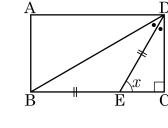
해설

 $\triangle ABC$ 는 $\overline{AB} = \overline{AC} = 8$ cm 인 이등변삼각형이므로 $\angle ABC = \angle ACB = 60^{\circ}$ 따라서 ∠BAC = 60 ° 이므로

△ABC는 정삼각형이다.

 $\overline{\mathrm{AD}}$ 는 밑변 $\overline{\mathrm{BC}}$ 를 수직이등분하므로 $\overline{BD} = \frac{1}{2} \times 8 = 4(cm)$

다음 그림과 같은 직사각형 ABCD 에서 $\overline{BE}=\overline{DE}$, $\angle BDE=\angle CDE$ 8. 일 때, $\angle x$ 의 크기는?



① 45° ② 50°

③ 55°

(4)60°

⑤ 65°

해설

 $\angle \mathrm{BDE} = \angle a$ 라고 하면 $\angle \mathrm{BDE} = \angle \mathrm{CDE} = \angle a$ 이고, $\angle x = 2\angle a$ △CDE 의 내각의 합을 이용하면

 $180^{\circ} = \angle CDE + \angle DEC + \angle ECD$ $= \angle a + 2 \angle a + 90^{\circ}$

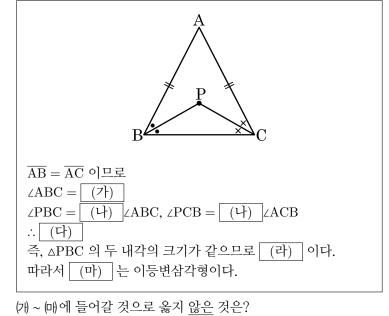
 $=3\angle a+90^{\circ}$

∴ ∠a = 30°

한편 $\angle x = 2 \angle a$ 이므로

 $\therefore \angle x = 60^{\circ}$

9. 다음은 $\lceil \overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC의 두 밑각 $\angle B$, $\angle C$ 의 이등분선의 교점을 P라 하면 $\triangle PBC$ 도 이등변삼각형이다.」를 보이는 과정이다.



① (7H) ∠ACB

②(H) 2

⑤ (□) △PBC

해설

 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ 이므로

 $\angle ABC = (\angle ACB)$

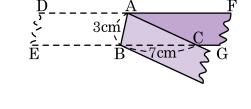
 $\angle PBC = (\frac{1}{2})\angle ABC$,

 $\angle PCB = (\frac{1}{2})\angle ACB$

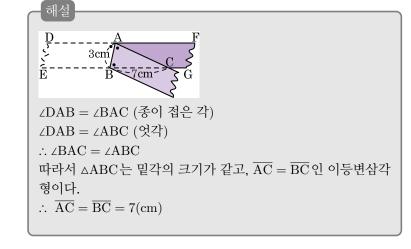
 \therefore (∠PBC = ∠PCB) 즉, ΔPBC 의 두 내각의 크기가 같으므로 ($\overline{PB} = \overline{PC}$)이다.

따라서 (△PBC)는 이등변삼각형이다.

 ${f 10.}$ 다음 그림과 같이 폭이 일정한 종이테이프를 접었을 때, ${f AC}$ 의 길이는?



① 3cm ② 4cm ③ 5cm ④ 6cm ⑤ 7cm



11. $\triangle ABC$ 에서 $\angle A=90^\circ$ 이다. $\overline{DB}=4cm$, $\overline{EC}=6cm$ 일 때, $\triangle ABC$ 의 넓이는 ?

EC = 6cm 일 때, ΔABC 의 넓이는 ?

- ① 20cm^2 ④ 30cm^2
- 2 24cm^2
- $326 \mathrm{cm}^2$
- $\bigcirc 50 \text{cm}^2$

해설 $\Delta ADB \equiv \Delta CEA \ \, ^{\circ}] 므로 \ \overline{DB} = \overline{EA} = 4 \mathrm{cm} \; , \; \overline{DA} = \overline{EC} = 6 \mathrm{cm}$

 $\triangle ABC = \Box DBCE - \triangle ADB - \triangle CEA$ $= 50 - 12 - 12 = 26(cm^{2})$

- 12. 다음 그림의 $\triangle ABC$ 는 $\angle C = 90^{\circ}$, $\overline{AC} = \overline{BC}$ 인 직각이등변삼각형이다. $\overline{\mathrm{AB}}$ 위에 $\overline{\mathrm{AC}}=\overline{\mathrm{AD}}$ 인 점 D 를 잡고 $\overline{AB}\bot\overline{DE}$ 가 되게 점 E 를 \overline{BC} 위에 잡는다. $\overline{\mathrm{EC}}=4\mathrm{cm}$ 일 때, $\overline{\mathrm{DB}}+\overline{\mathrm{DE}}$ 의 길이는? 3 8cm ② 7.5cm \bigcirc 7cm

해설

4 8.5cm \bigcirc 9cm

 $\triangle ADE$ 와 $\triangle ACE$ 에서 $\angle ADE = \angle C = 90^{\circ} \cdots$ \bigcirc

 \bigcirc , \bigcirc , \bigcirc 에 의해 $\triangle ADE \equiv \triangle ACE(RHS합동)$ $\therefore \overline{\mathrm{DE}} = \overline{\mathrm{EC}} = 4(\mathrm{cm}) \cdots \ \textcircled{a}$

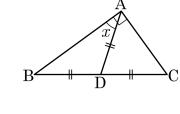
 $\overline{\mathrm{AC}} = \overline{\mathrm{BC}}$, $\angle \mathrm{D} = 90^\circ$ 이므로 $\angle DBE = \angle DEB = 45^{\circ}$

 $\therefore \overline{\mathrm{DB}} = \overline{\mathrm{DE}} \cdots \ \textcircled{\tiny \square}$

②, \bigcirc 에 의해 $\overline{\mathrm{DB}} = \overline{\mathrm{DE}} = 4(\mathrm{cm})$

 $\therefore \overline{\rm DB} + \overline{\rm DE} = 4 + 4 = 8 (\rm cm)$

13. $\triangle ABC$ 에서 $\angle B$ 와 $\angle C$ 의 크기의 비는 2:3이고, $\overline{AD}=\overline{BD}=\overline{CD}$ 가 되도록 점 D 를 잡았을 때, $\angle BAD$ 의 크기는?



① 30° ② 32°

 34°

⑤ 38°

위 그림에서 $\overline{\mathrm{AD}} = \overline{\mathrm{BD}} = \overline{\mathrm{CD}}$ 이므로 점 D 는 외심이다.

해설

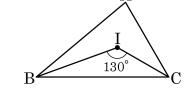
 $\triangle ABD$ 가 이등변삼각형이므로 ($::\overline{BD}=\overline{AD})$ $\triangle ABD = \angle BAD = \angle B$

 $\triangle \mathrm{ADC}$ 는 이등변삼각형이므로 $(\because \overline{\mathrm{AD}} = \overline{\mathrm{CD}})$

 $\angle \mathrm{DAC} = \angle \mathrm{DCA} = \angle \mathrm{C}$ $\angle B: \angle C=2:3 \leftrightarrow \angle BAD: \angle CAD=2:3$

 $\angle BAD = \frac{2}{2+3} \times 90^{\circ} = \frac{2}{5} \times 90^{\circ} = 36^{\circ}$

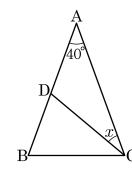
14. 다음 그림의 $\triangle ABC$ 의 내심을 I라 할 때, $\angle BIC=130\,^{\circ}$ 이면 $\angle A=$ ()°이다. 빈칸을 채워 넣어라.



답:

▷ 정답: 80

15. 다음 $\triangle ABC$ 에서 $\overline{AB}=\overline{AC},\ \overline{CB}=\overline{CD},\ \angle A=40\,^{\circ}$ 일 때, $\angle x$ 의 크기



① 20° ② 25°

③30°

④ 35° ⑤ 40°

△ABC에서

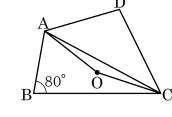
해설

 $\angle ABC = \angle ACB = \frac{1}{2}(180 \,^{\circ} - 40 \,^{\circ}) = 70 \,^{\circ}$ △CDB에서

 $\angle BCD = 180^{\circ} - (2 \times 70^{\circ}) = 40^{\circ}$

따라서 $\angle x = 70^{\circ} - 40^{\circ} = 30^{\circ}$ 이다.

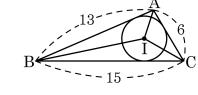
16. 다음 그림에서 점 O는 $\triangle ABC$ 의 외심이고 동시에 $\triangle ACD$ 의 외심일 때, ∠D의 크기는?



⑤100° ① 20° ② 40° ③ 60° ④ 80°

 $\angle AOC = 2 \times 80$ ° = 160°이므로 $\angle ADC = \frac{1}{2}(360^{\circ} - 160^{\circ}) = 100^{\circ}$ $\therefore \angle D = 100^{\circ}$

17. 다음 그림에서 점 I 는 \triangle ABC 의 내심이고 $\overline{AB}=13$, $\overline{BC}=15$, $\overline{CA}=6$ 이다. \triangle AIB : \triangle BIC : \triangle CIA 를 a:b:c 라고 할 때, a+b-c 의 값을 구하여라.(단, a,b,c는 서로 소인 자연수)



▷ 정답: 22

답:

해설 내접원의 반지름의 길이를 r 이라 하면

(△AIB 의 넓이) = $\frac{1}{2} \times r \times 13 = \frac{13}{2}r$

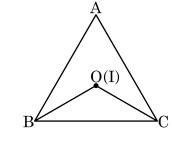
 $(\triangle BIC 의 넓이) = \frac{1}{2} \times r \times 15 = \frac{15}{2}r$

$$(\triangle CIA 의 넓이) = \frac{1}{2} \times r \times 6 = 3r$$
 이다.

$$\triangle$$
AIB : \triangle BIC : \triangle CIA $=\frac{13}{2}r:\frac{15}{2}r:3r=13:15:6$ 이므로, $a=13,\,b=15,\,c=6$ 이다.

따라서 13 + 15 - 6 = 22 이다.

18. 다음 그림과 같이 $\triangle ABC$ 의 외심 O 와 내심 I 가 일치할 때, 다음 중 옳지 <u>않은</u> 것은?



- ① $\angle ABO = \angle BCO$
- \bigcirc $\overline{AB} = \overline{BC}$ $4 \angle A = 2 \angle OCB$

 $\triangle ABC$ 의 외심 O 와 내심 I 가 일치할 때는 삼각형이 정삼각형인 경우이므로

 $\angle BAC = 60^{\circ}$ 이다. 따라서 $\angle BOC = 2\angle A = 120^\circ$ 이고, $\triangle OBC$ 는 이등변삼각형이

므로 ∠OBC = 30° 이다.

19. 다음 그림에서 $\triangle ABC$ 는 $\angle B=90^\circ$ 인 직각이등변삼각형이다. $\angle ADB=\angle BEC=90^\circ$ 일 때, \overline{EC} 의 길이는?

12 cm E

① 3cm

②4cm

3 5cm

4 7cm

⑤ 9cm

△ABD 와 △BCE 에서

해설

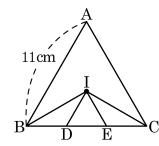
 $\angle ADB = \angle BEC = 90^{\circ}, \overline{AB} = \overline{BC}, \angle ABD = \angle BCE$

△ABD ≡ △BCE (RHA 합동)

 $\overline{BD} = \overline{EC}$ $\therefore \overline{EC} = \overline{BE} - \overline{DE} = 12 - 8 = 4 \text{ (cm)}$

.. EC = 1

 ${f 20}$. 다음 그림에서 점 I 는 정삼각형 ABC 의 내심이다. ${f AB}//{f ID},$ ${f AC}//{f IE}$ 이고 $\overline{\mathrm{AB}}=11\mathrm{cm}$ 일 때, $\Delta \mathrm{IDE}$ 의 둘레의 길이는?



- ① $\frac{11}{3}$ cm ④ 12cm
- \bigcirc $\frac{11}{2}$ cm ⑤ 13cm

③11cm

 $\angle ABI = \angle IBD$ 이고 $\angle ABI = \angle BID(\because \overline{AB}//\overline{ID})$ 이므로 $\angle IBD =$ $\angle BID$ 이다. $\Rightarrow \overline{BD} = \overline{ID}$ 같은 방법으로 $\angle ACI = \angle ICE$ 이고 $\angle ACI = \angle CIE$ ($\because \overline{AC}//\overline{IE}$) 이므로 $\angle ICE = \angle CIE$ 이다. $\Rightarrow \overline{IE} = \overline{EC}$ 이다. 따라서 (ΔIDE 의 둘레의 길이) = $\overline{ID}+\overline{DE}+\overline{IE}=\overline{BD}+\overline{DE}+$ $\overline{\mathrm{EC}} = \overline{\mathrm{BC}} = 11 \mathrm{(cm)}$ 이다.