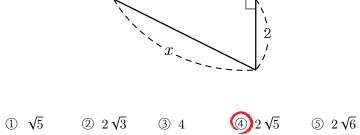
# 1. 다음 그림에서 x 의 값은?

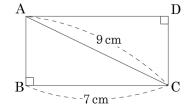


피타고라스 정리에 따라  $4^2 + 2^2 = x^2$  $x^2 = 20$ 

해설

x > 0 이므로  $x = 2\sqrt{5}$  이다.

2. 가로의 길이가 7cm, 대각선의 길이 가 9cm 인 직사각형의 넓이를 구하 여라.



답: cm²
 > 정답: 28√2 cm²

28 V2 <u>CIII</u>

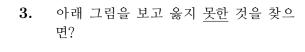
#### 피타고라스 정리에 따라

해설

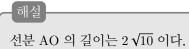
 $7^2 + x^2 = 9^2$ x 는 변의 길이이므로 양수이다.

 $x \leftarrow 면의 철이어르도 항$  $따라서 <math>x = 4\sqrt{2}$  이므로

직사각형의 넓이는  $4\sqrt{2} \times 7 = 28\sqrt{2} \text{(cm}^2)$  이다.



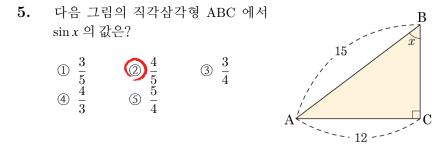
- ① 점 C 의 좌표는 (-2, 3) 이다. ② 선분 AC 의 길이는 6-3=3 이다.
- ③ 선분 CB 의 길이는 5 (-2) = 7 이다.
- ④ 선분 AO 의 길이는 4√3 이다.
- ⑤ 선분 AB 의 길이는 √58 이다.

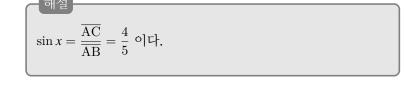


- **4.** 한 변을  $\sqrt{3}a$  로 하는 정사면체가 있다. 이 정사면체의 부피를 구하면?

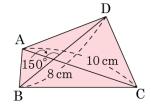
  - ①  $\frac{\sqrt{5}}{4}a^3$  ②  $\frac{\sqrt{6}}{4}a^3$  ③  $\frac{\sqrt{6}}{5}a^3$  ④  $\frac{\sqrt{7}}{6}a^3$

해설 
$$\frac{\sqrt{2}}{12}(\sqrt{3}a)^3 = \frac{\sqrt{2}}{12} \times 3\sqrt{3}a^3 = \frac{\sqrt{6}}{4}a^3$$





다음 그림에서 □ABCD 의 넓이를 구하여 6. 빈 칸을 채워 넣어라.



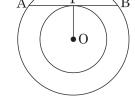
(사각형 ABCD의 넓이) = ( )  $\mathrm{cm}^2$ 

▶ 답:

▷ 정답: 20

(사각형의 넓이) = 대각선×대각선× $\frac{1}{2}$ × $\sin\theta$  따라서  $8 \times 10 \times \frac{1}{2}$ × $\sin 30$ ° = 20( $\cos^2$ ) 이다.

7. 다음은 점 O = 원의 중심으로 하여 큰 원과 작은 원을 각각 그린 것이다. 원의 중심  ${
m O}$ 에서 작은 원의 접선이고 큰 원의 현인  $\overline{\mathrm{AB}}$ O 를 그어 그 길이를 측정하려 한다. 작은 원의 반지름이  $8\,\mathrm{cm}$  , 큰 원의 반지름이  $12\,\mathrm{cm}$  라고 할 때,  $\overline{\mathrm{AB}}$  의 길이는?

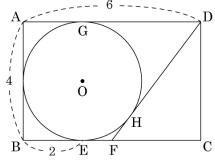


(4)  $10\sqrt{5}$  cm (5)  $11\sqrt{5}$  cm

①  $7\sqrt{5}$  cm

2 8  $\sqrt{5}$  cm 3 9  $\sqrt{5}$  cm

해설  $\frac{\overline{PB}}{\overline{AB}} = \sqrt{12^2 - 8^2} = \sqrt{80} = 4\sqrt{5} \text{ (cm)}$   $\overline{AB} = 2 \times 4\sqrt{5} = 8\sqrt{5} \text{ (cm)}$  8. 다음 그림과 같이 직사각형 ABCD 의 세 변의 접하는 원 O 가 있다.  $\overline{\mathrm{DF}}$  가 원의 접 선이고 세 점 E, G, H 가 접 점일 때, 다음 중 옳지 <u>않은</u> 것은?



②  $\overline{\mathrm{DH}}$  의 길이의 길이는 4 이다.

①  $\overline{AG}$  의 길이는 2 이다.

- ③  $\overline{\mathrm{EF}} = 1$  이다.
- ④ $\overline{\mathrm{CF}} = 4$  이다.
- ⑤ ΔCDF 의 넓이는 6 이다.

### ③ $\overline{\mathrm{EF}} = x$ 라 할 때, $\overline{\mathrm{CF}}$ 의 길이는

해설

 $\overline{\mathrm{CF}}=(4-x),\;\overline{\mathrm{DF}}=(4+x)$  이므로 피타고라스의 성질에 의해  $(4+x)^2 = 4^2 + (4-x)^2$ 

 $\therefore x = 1$  $\textcircled{4} \ \overline{\text{CF}} = 4 - 1 = 3$ 

9. 다음 도수분포표는 희정이네 반 학 생 수학 성적을 나타낸 것이다. 이 반 학생들의 수학 점수의 평균이 72.5 점 일 때,  $\frac{A}{B}$  의 값은?

| 계급(점)                                | 도수(명) |
|--------------------------------------|-------|
| 40 <sup>이상</sup> ~ 50 <sup>미만</sup>  | 2     |
| 50 <sup>이상</sup> ~ 60 <sup>미만</sup>  | 3     |
| 60 <sup>이상</sup> ~ 70 <sup>미만</sup>  | 10    |
| 70 이상 ~ 80 미만                        | A     |
| 80 <sup>이상</sup> ~ 90 <sup>미만</sup>  | 9     |
| 90 <sup>이상</sup> ~ 100 <sup>미만</sup> | В     |
| 합계                                   | 36    |
|                                      |       |

① 2 ② 3 ③ 4

⑤ 6

전체 학생 수가 36 명이므로

2 + 3 + 10 + A + 9 + B = 36

 $\therefore A + B = 12 \cdots \bigcirc$ 또한, 평균이 72.5 점이므로

 $\frac{45 \times 2 + 55 \times 3 + 65 \times 10 + 75 \times A + 85 \times 9}{36} + \frac{95 \times B}{36} = 72.5$ 

75A + 95B = 940 $\therefore 15A + 19B = 188 \cdots \bigcirc$ 

90 + 165 + 650 + 75A + 765 + 95B = 2610

①, ①을 연립하여 풀면 A = 10, B = 2

 $\therefore \ \frac{A}{B} = \frac{10}{2} = 5$ 

10. 다음은 선영이네 반 학생의 미술 실기 점수를 조사하여 만든 도수분 포표이다. 실기 점수의 평균이 73.5 점일 때, y-2x 의 값을 구하여라.

| 계급(점)                                | 도수 |
|--------------------------------------|----|
| 50이상 ~ 60미만                          | 2  |
| 60 <sup>이상</sup> ~ 70 <sup>미만</sup>  | 5  |
| 70이상 ~ 80미만                          | х  |
| 80이상 ~ 90미만                          | 4  |
| 90 <sup>이상</sup> ~ 100 <sup>미만</sup> | 1  |
| 합계                                   | у  |
|                                      | -  |

▷ 정답: 4

해설

▶ 답:

2 + 5 + x + 4 + 1 = y

 $x - y = -12 \cdots \bigcirc$ 학생의 점수의 평균이 73.5 점이므로

 $\frac{55 \times 2 + 65 \times 5 + 75 \times x + 85 \times 4 + 95 \times 1}{55 \times 2 + 65 \times 5 + 75 \times x + 85 \times 4 + 95 \times 1} = 73.5,$ 

у  $\frac{110 + 325 + 75x + 340 + 95}{y} = 73.5$ 

 $870 + 75x = 73.5y \cdot \cdot \cdot \bigcirc$ ①, ①을 연립하여 풀면  $x=8,\ y=20$ 

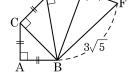
 $\therefore y - 2x = 20 - 2 \times 8 = 4$ 

- **11.** 3개의 변량 a,b,c의 평균이 7, 분산이 8일 때, 변량 5a,5b,5c의 평균은 m, 분산은 n이다. 이 때, n-m의 값은?
  - ① 115 ② 135 ③ 165 ④ 185 ⑤ 200

 $m = 5 \cdot 7 = 35, n = 5^2 \cdot 8 = 200$  $\therefore n - m = 200 - 35 = 165$ 

12. 다음 그림에서  $\overline{\mathrm{BF}}=3\sqrt{5}$  일 때,  $\overline{\mathrm{AC}}$  의 길 이는?

- $\bigcirc$   $\sqrt{3}$ ① 1  $\sqrt{5}$ 4



 $\overline{\mathrm{AC}} = a$ 라고 두면

해설

 $\overline{\mathrm{BF}} = \sqrt{a^2 + a^2 + a^2 + a^2 + a^2} = a\sqrt{5} = 3\sqrt{5}, a = 3$ 이다.

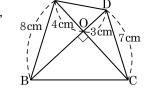
13. 아래 그림에서  $\overline{AC}\bot\overline{BD}$  이고,  $\overline{AB}=8cm$ ,  $\overline{DC}=7cm$ ,  $\overline{OA}=4cm$ ,  $\overline{OD}=3cm$  일 때,  $\overline{BC}$  의 길이를 구하면?

① 9cm

② 10cm

③  $3\sqrt{10}$ cm ④  $2\sqrt{22}$ cm

⑤ 88cm



해설 \_\_\_\_\_\_

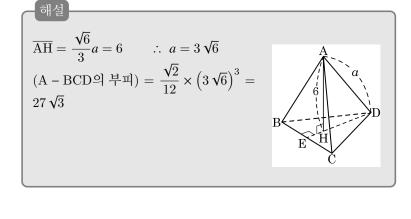
 $\overline{AD}^2 + \overline{BC}^2 = \overline{AB}^2 + \overline{CD}^2$   $5^2 + \overline{BC}^2 = 8^2 + 7^2$   $\therefore \overline{BC} = 2\sqrt{22} \text{ (cm)}$ 

 $\triangle ABO$  에서  $\overline{BO} = \sqrt{64 - 16} = 4\sqrt{3}$  $\triangle DOC$  에서  $\overline{OC} = \sqrt{49 - 9} = 2\sqrt{10}$ 

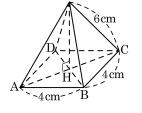
 $\therefore$   $\triangle BOC$  에서  $\overline{BC} = \sqrt{48 + 40} = 2\sqrt{22} \text{(cm)}$ 

**14.** 한 모서리의 길이가 a 인 정사면체의 높이가 6 일 때, 부피를 구하여라.

▷ 정답: 27√3



- 15. 다음 그림의 정사각뿔 V ABCD 에서  $\overline{VH}$  의 길이는?
  - ①  $\sqrt{7}$  cm
- ② 4 cm
- 35 cm
- $\boxed{4}$   $2\sqrt{7}$  cm
- $\bigcirc$  4 $\sqrt{2}$  cm



$$\square$$
ABCD 가 정사각형이므로  $\overline{AC} = \sqrt{4^2 + 4^2} = 4\sqrt{2} \text{(cm)}$ 

$$\overline{AH} = \frac{1}{2}\overline{AC} = 2\sqrt{2}(\text{ cm})$$

$$\therefore \overline{VH} = \sqrt{6^2 - (2\sqrt{2})^2} = 2\sqrt{7}(\text{cm})$$

**16.** 다음 그림에서  $\angle P = 43^{\circ}$ ,  $\angle Q = 25^{\circ}$  일 때,  $\angle B$  의 크기를 구하여라.

답:

➢ 정답: 56°

 $\angle \mathbf{B} = x$  라고 하면

해설

∠BCD =  $180^{\circ} - 25^{\circ} - \angle x = 155^{\circ} - \angle x$ ∠BAP =  $180^{\circ} - 43^{\circ} - \angle x = 137^{\circ} - \angle x$ ∠BCD + ∠BAP =  $155^{\circ} - \angle x + 137^{\circ} - \angle x = 180^{\circ}$ 2∠x =  $112^{\circ}$ ∴ ∠x =  $56^{\circ}$ 

.....

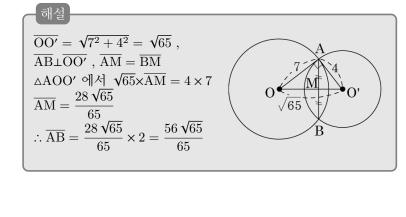
- 17. 다음 그림에서 두 원 O, O' 의 중심을 연결한 선분과 공통현 AB 가 점M 에서 만나고 OA = 7, AO' = 4, ∠OAO' = 90°일 때, 공통현 AB 의길이는?
- O M O'

③  $56\sqrt{21}$ 

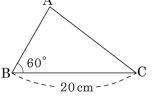
 $\boxed{4} \frac{56\sqrt{65}}{65}$ 

① 8

②  $2\sqrt{21}$  80 $\sqrt{89}$ 



18. 다음 그림의  $\triangle ABC$  에서  $\overline{BC}=20\,\mathrm{cm},$  $\angle B = 60$ ° 이고  $\triangle ABC$  의 넓이가  $60\sqrt{3}\,\mathrm{cm}^2$  일 때,  $\overline{\mathrm{AC}}$  의 길이를 구하 여라.



▶ 답: ightharpoonup 정답:  $4\sqrt{19}$   $\underline{\mathrm{cm}}$ 

점 A 에서  $\overline{BC}$  에 내린 수선의 발을 H 라 하면  $\triangle ABC$  의 넓이는  $\frac{1}{2} \times 20 \times \overline{\mathrm{AH}} = 60\,\sqrt{3}$  이다.

 $\underline{\mathrm{cm}}$ 

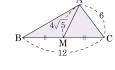
 $\therefore \overline{AH} = 6\sqrt{3} \text{ (cm)}$ 

△ABH 에서

 $\overline{\rm BH} = \overline{\rm AH} \cdot \tan 30^{\circ} = 6\sqrt{3} \times \frac{1}{\sqrt{3}} = 6 \ (\, \rm cm)$ ∴  $\overline{\text{CH}} = 20 - 6 = 14 \text{ (cm)}$ 따라서 △ACH 에서

 $\overline{{
m AC}} = \sqrt{(6\,\sqrt{3})^2 + 14^2} = 4\,\sqrt{19}$  (cm) 이다.

19. 다음 그림의  $\triangle ABC$  에서 변 BC 의 중점을 M ,  $\overline{BC}$  = 10,  $\overline{AC}$  =  $\overline{5}$ ,  $\overline{\mathrm{AM}} = 2\sqrt{5}$  일 때,  $\Delta\mathrm{ABC}$  의 넓이를 구하여라.



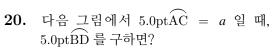
답:

ightharpoonup 정답:  $16\sqrt{5}$ 

 $\overline{AC}=\overline{MC}=5$  이므로  $\Delta AMC$  는 이등변삼각형이다. 꼭짓점 C 에서 변 AM 에 내린 수선의 발을 H 라 하면  $\overline{\text{CH}} = \sqrt{6^2 - (2\sqrt{5})^2} = 4$ 

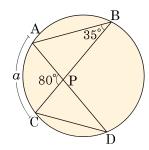
$$\triangle$$
AMC 의 넓이는  $\frac{1}{2} \times 4\sqrt{5} \times 4 = \frac{1}{2} \times 6 \times 6 \times \sin C$  이고,  $\sin C = \frac{4\sqrt{5}}{9}$  이다.

따라서 
$$\triangle ABC = \frac{1}{2} \times \overline{AC} \times \overline{BC} \times \sin C$$
  
$$= \frac{1}{2} \times 6 \times 12 \times \frac{4\sqrt{5}}{9} = 16\sqrt{5}$$



①  $\frac{6}{5}a$  ②  $\frac{7}{5}a$  ③  $\frac{8}{7}a$  ④  $\frac{10}{9}a$ 





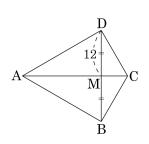


 $\triangle ABP$  에 의해  $\angle APC = \angle ABP + \angle BAP$   $\angle BAP = 80^{\circ} - 35^{\circ} = 45^{\circ}$   $5.0ptAC: 5.0ptBC = 35^{\circ}: 45^{\circ} = a: 5.0ptBD$ 

$$5.0 \text{pt} \widehat{AC} : 5.0 \text{pt} \widehat{BC} = 35$$

$$5.0 \text{pt} \widehat{\text{BD}} = \frac{45\,^{\circ}}{35\,^{\circ}} = \frac{9}{7}a$$

**21.** 다음 그림에서 □ABCD는 원에 내접하고  $\overline{\rm DM}=\overline{\rm BM},\,\overline{\rm AM}:\overline{\rm CM}=3:1,\,\overline{\rm DM}=12$ 일 때, □ABCD의 외접원의 반지름의 길이 는? ①  $2\sqrt{3}$ ②  $4\sqrt{3}$  $36\sqrt{3}$ 



 $498\sqrt{3}$ 

⑤  $10\sqrt{3}$ 

 $\overline{\mathrm{BD}} \bot \overline{\mathrm{AC}}$ 이므로  $\overline{\mathrm{AC}}$ 는 지름이고

해설

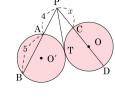
 $\overline{\mathrm{AM}}:\overline{\mathrm{CM}}=3:1$  이므로  $\overline{\mathrm{AM}}=3k,\overline{\mathrm{CM}}=k$  라 하면

 $\begin{aligned} &12\times 12 = 3k\times k,\ 144 = 3k^2\\ &k^2 = 48, k = 4\sqrt{3}(\because k>0)\ , \end{aligned}$ 

 $\overline{AM} = 12\sqrt{3}, \overline{CM} = 4\sqrt{3}$ 

 $\therefore$  (반지름의 길이)=  $\dfrac{\overline{\mathrm{AC}}}{2}=\dfrac{\overline{\mathrm{AM}}+\overline{\mathrm{CM}}}{2}=\dfrac{16\sqrt{3}}{2}=8\sqrt{3}$ 

**22.** 다음 그림에서  $\overline{PT}$  는 두 원 O, O' 의 공통접선이다.  $\overline{PA}=4, \overline{AB}=5$ 이고  $\overline{PC}$  :  $\overline{CO}=1$  : 2 일 때, 원 O 의 넓이는  $\frac{b}{a}\pi$  라고 한다. 상수  $a,\ b$  의 합 a+b 의 값을 구하여라. (단,  $a,\ b$ 는 서로소)



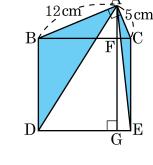
▷ 정답: 149

▶ 답:

 $\overline{PT}^2 = \overline{PA} \times \overline{PB} = \overline{PC} \times \overline{PD}$   $4 \times 9 = x \times 5x, \quad x^2 = \frac{36}{5}$ 한편, 원의 넓이는  $\frac{144}{5}\pi$ 이다.

따라서 a+b=5+144=149 이다.

**23.** 다음 그림과 같이  $\angle A=90^\circ$  ,  $\overline{AB}=12\mathrm{cm}$  ,  $\overline{AC}=5\mathrm{cm}$  인  $\triangle ABC$  가 있다.  $\overline{\mathrm{BC}}$  를 한 변으로 하는 정사각형 BDEC 를 그렸을 때, 색칠한 부분의 넓이를 구하여라.



▶ 답:

 $\underline{\mathrm{cm}^2}$ 

ightharpoonup 정답:  $rac{169}{2}$   $m cm^2$ 

 $\triangle ABC$  에서  $\overline{BC} = \sqrt{12^2 + 5^2} = 13 (cm)$ 

해설

( ΔABD의 넓이)= ( ΔBDF의 넓이 ) ( △AEC의 넓이)= ( △FEC의 넓이)

(색칠한 부분의 넓이)=  $\triangle BDF + \triangle FEC = \frac{1}{2}(\square BDEC) =$ 

 $\frac{169}{2}(\mathrm{cm}^2)$ 

**24.**  $\sin A = \frac{1}{3}$  일 때, 직선  $x \sin A + y \cos A = 0$  과 수직인 직선의 기울기를 구하여라.

▶ 답:

▷ 정답: 2√2

 $y = -\frac{\sin A}{\cos A}x = -x \tan A$  이므로 기울기는  $-\tan A$   $\sin A = \frac{1}{3}$  이므로  $\cos A = \frac{2\sqrt{2}}{3}$ ,  $\tan A = \frac{1}{2\sqrt{2}}$ 

 $\frac{1}{3} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$  따라서 두 직선이 수직으로 만나려면 기울기의 곱이 -1 이어야 하므로

 $- an A imes (수직인 직선의 기울기) = <math>-rac{1}{2\sqrt{2}} imes$ 

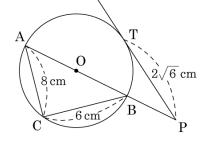
(수직인 직선의 기울기) = -1이다. 따라서 수직인 직선의 기울기는  $2\sqrt{2}$ 이다.

## 25. 다음 그림에서 $\overrightarrow{PT}$ 가 원 O 의 접 선일 때, PB 의 길이는?

① 1 cm

2 cm 4 cm ③ 3 cm

⑤ 5 cm



ΔABC 에서 피타고라스 정리를 이용하면

 $\overline{AB} = 10 (\,\mathrm{cm})$  이므로  $\overline{PB} = x$  라고 하면

원의 중심을 지나는 할선과 접선 사이의 관계에 따라  $(2\sqrt{6})^2 = x \times (x+10)$ (x-2)(x+12) = 0

 $\therefore \overline{PB} = 2(\text{cm}) (\because x > 0)$ 이다.