1. 양수
$$a, b, c$$
에 대하여 $a + b + c = 9$ 일 때 abc 의 최댓값은?

$$a+b+c \ge 3 \sqrt[3]{abc}$$
 에서 $9 \ge 3 \sqrt[3]{abc}$, $3 \ge \sqrt[3]{abc}$, $27 \ge abc$

2. 양수 x에 대하여 $\frac{x^2 + 2x + 2}{x}$ 는 x = a에서 최솟값 b를 가질 때, -2a + b + 1의 값은?

$$x > 0$$
이므로 산술평균, 기하평균에 의하여
$$\frac{x^2 + 2x + 2}{x} = x + 2 + \frac{2}{x}$$
$$x + \frac{2}{x} + 2 \ge 2\sqrt{x \cdot \frac{2}{x}} + 2 = 2\sqrt{2} + 2$$
(단, 등호는 $x = \sqrt{2}$ 일 때 성립) 최솟값이 $2\sqrt{2} + 2$ 이므로 $b = 2\sqrt{2} + 2$ 등호는 $x = \sqrt{2}$ 일 때 성립하므로 $a = \sqrt{2}$

따라서 $-2a+b+1=-2\sqrt{2}+(2\sqrt{2}+2)+1=3$

- **3.** 양수 x에 대하여 $8x^2 + \frac{2}{1}$ 의 최솟값은?

 - ① $2\sqrt{3}$ ② $2\sqrt[3]{3}$

(5) 10

x > 0 이므로

$$8x^{2} + \frac{2}{x} = 8x^{2} + \frac{1}{x} + \frac{1}{x}$$

$$\geq 3\sqrt[3]{8x^{2} \times \frac{1}{x} \times \frac{1}{x}} = 3\sqrt[3]{8} = 6$$
(단, 등호는 $x = \frac{1}{2}$ 일 때 성립)

4. a, b, x y가 실수이고, $a^2 + b^2 = 8, x^2 + y^2 = 2$ 일 때 ax + by의 최댓값과 최솟값의 곱은?

$$a, b, x, y$$
가 실수이므로
코시-슈바르츠의 부등식에 의하여
 $(a^2 + b^2)(x^2 + y^2) \ge (ax + by)^2$

 $8 \times 2 \ge (ax + by)^2$ $\therefore -4 \le ax + by \le 4$ $(최댓값) \times (최솟값) = -16$

- 5. x, y가 실수이고 $x^2 + y^2 = 10$ 일 때 x + 3y의 최댓값은?
 - ① 5 ② 6 ③ 8 ④ 9 ⑤10

$$x, y$$
가 실수이므로
코시-슈바르츠 부등식에 의하여
 $(1^2 + 3^2)(x^2 + y^2) \ge (x + 3y)^2$
이 때, $x^2 + y^2 = 10$ 이므로
 $100 \ge (x + 3y)^2$
 $\therefore -10 \le x + 3y \le 10$
(단, 등호는 $x = \frac{y}{3}$ 일 때 성립)
따라서 최댓값은 10 이다.

해설

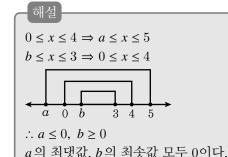
6. 실수 x, y가 $x^2 + y^2 = 5$ 를 만족할 때, x + 2y의 최댓값 M, 최솟값 m의 합 M + m을 구하여라.

▷ 정답: 0

답:

코시-슈바르츠의 부등식에 의해 $(1^2 + 2^2)(x^2 + y^2) \ge (x + 2y)^2$

$$(x+2y)^2 \le 5 \cdot 5$$


∴ -5 ≤ x + 2y ≤ 5 이 므로

$$x + 2y$$
의 최댓값 $M = 5$, 최솟값 $m = -5$
∴ $M + n = 5 + (-5) = 0$

7. 세 조건 p: 4 ≤ x ≤ 5, q: x ≤ a, r: x ≥ b 에 대하여 p 가 q 이기 위한 충분조건이 되도록 하는 a 의 최솟값을 m 이라 하고, r 이 p 이기 위한 필요조건이 되도록 하는 b 의 최댓값을 n 이라 할 때, m+n 의 값은?

$$p \Rightarrow q$$
 이면 $P \subset Q$ 이므로 $a \ge 5$
 $\therefore m = 5$
 $p \Rightarrow r$ 이면 $P \subset R$ 이므로 $b \le 4$
 $\therefore m + n = 9$

8. 두 조건 $a \le x \le 5$, $b \le x \le 3$ 이 각각 조건 $0 \le x \le 4$ 이기 위한 필요조건과 충분조건일 때, a의 최댓값과 b의 최솟값의 합은?

9. $x \ge a$ 가 $-2 \le x - 1 \le 2$ 이기 위한 필요조건일 때, 상수 a 의 최댓값을 구하면?

①
$$-2$$
 ② -1 ③ 0 ④ 1 ⑤ 2

```
해설 -1 \le x \le 3 이므로 a \le -1 이어야 한다.
```

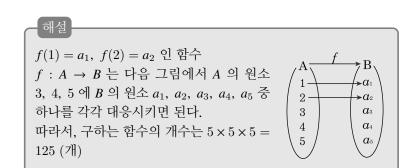
10. 집합 A = {1, 2, 3, 4, 5}, B = {-1, 0, 1} 에 대하여 함수 $f: A \to B$ 를 정의할 때, f(1)f(2)f(3)f(4)f(5) = 0 인 함수 f 의 개수를 구하여 라.

개

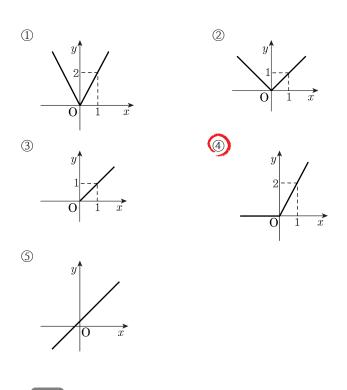
	답:	
\triangleright	정답:	211 개

f(1), f(2), f(3), f(4), f(5) 이들 중
 적어도 하나는 0 이므로,
 전체 함수의 개수에서
 f(1)f(2)f(3)f(4)f(5) ≠ 0 인
 함수의 개수를 빼면 된다.

그러므로 $3^5 - 2^5 = 211$

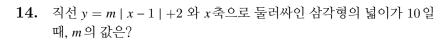

11. 두 집합
$$A = \{-1, 0, 1\}$$
, $B = \{-2, -1, 0, 1, 2\}$ 에 대하여 A 에서 B 로의 함수 f 가 $x \in A$ 인 모든 x 에 대하여 $f(-x) = -f(x)$ 를 만족시킬 때, 함수 f 의 개수는 몇 개인가?

집합
$$A$$
 에서 B 로의 함수 f 가 $f(-x) = -f(x)$ 를 만족시키려면 -1 이 대응할 수 있는 원소는 -2 , -1 , 0 , 1 , 2 의 5 가지. 0 이 대응할 수 있는 원소는 $f(-0) = -f(0)$ 에서, $2f(0) = 0$, 즉 0 의 1 가지 1 이 대응할 수 있는 원소는 $-f(-1)$ 의 1 가지 따라서, 함수 f 의 개수는 $5 \times 1 \times 1 = 5$ (개)

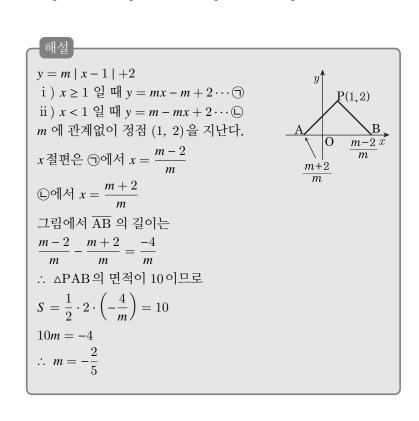

12. 집합 $A = \{1, 2, 3, 4, 5\}$ 에서 집합 $B = \{a_1, a_2, a_3, a_4, a_5\}$ 로의 대응 f 중 $f(1) = a_1$, $f(2) = a_2$ 인 함수 f 의 개수는?

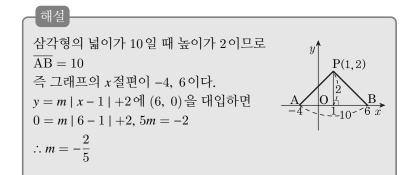
125 개

③ 64 개

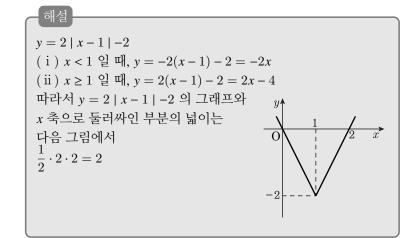


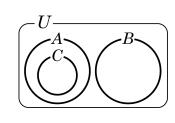
13. 다음 중 함수 y = x + |x|의 그래프는?




$$y = x + |x|$$
에서
 $x \le 0$ 일 때 $y = x - x = 0$ 이고

x > 0 일 때 y = x + x = 2x 이다. 따라서 주어진 함수의 그래프는 ④와 같다.


①
$$\frac{1}{5}$$
 ② $\frac{2}{5}$ ③ $-\frac{1}{5}$ ④ $-\frac{2}{5}$ ⑤ 1



15. 함수 y = 2 | x - 1 | -2 의 그래프와 x 축으로 둘러싸인 부분의 넓이를 구하여라.

- ▶ 답:
- ▷ 정답: 2

16. 전체집합 U 의 세 부분집합 A, B, C 의 포함 관계가 다음 벤 다이어그 램과 같을 때, 다음 중 옳은 것은?

$$\bigcirc$$
 $(A \cup C) \subset B$

$$\bigcirc$$
 $A^c \subset B$

$$② A \cup B \cup C = U$$

$$\textcircled{4}B\cap C=\emptyset$$

17. 1 부터 어떤 수까지의 자연수 중 k 의 배수를 원소로 하는 집합을 $P_{(k)}$ 라고 정의한다. $n(P_{(3)})=a$, $n(P_{(4)})=b$, $n(P_{(12)})=c$ 라고 할 때, $n((P_{(3)}\cup P_{(6)})\cup (P_{(2)}\cap P_{(4)}))$ 를 a,b,c로 나타내어라.

답:

해설
$$n(P_{(3)}) = a \ n(P_{(4)}) = b \ , \ n(P_{(12)}) = c 라고 할 때$$

$$n((P_{(3)} \cup P_{(6)}) \cup (P_{(2)} \cap P_{(4)}))$$

$$= n(P_3 \cup P_4)$$

$$= n(P_3) + n(P_4) - n(P_{12})$$

$$= a + b - c$$

①
$$(A \cup B) - C$$
 ② $A \cup B \cup C$ ③ $(A \cap B) - C$
④ $A \cap B \cap C^c$ ⑤ $(A - B)^c \cap C^c$

해설
한국 학생 중 여학생을 뺀 것 또는 한국 학생 중 여자가 아닌
사람이므로
$$(A\cap B)-C$$
 또는 $A\cap B\cap C^c$ 이다.