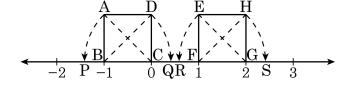
1. $\sqrt{45} + \sqrt{15} \times \frac{3}{\sqrt{3}} - \sqrt{10} \div \sqrt{2} = x\sqrt{5}$ 를 만족하는 상수 x 의 값을 구하여라.

) 답: x = _____

2. 분수 $\frac{2\sqrt{3}}{2+\sqrt{3}}$ 을 유리화하면?

① $4\sqrt{3} + 6$ ② $-6 + 4\sqrt{3}$ ③ $-4\sqrt{3} - 6$ $4 2\sqrt{7}$ $5 -5\sqrt{7} + 8$

3. $2\sqrt{5}$ 의 정수 부분을 a, 소수 부분을 b 라 할 때, a-b 의 값을 구하여라.


▶ 답: _____

4. 다음 보기 중 순환하지 않는 무한소수는 <u>모두</u> 몇 개인가?

 $\frac{\sqrt{16}}{3}$, $\sqrt{7} - 4$, 3.14, 0.2 $\dot{3}$, $-\sqrt{0.01}$, $\sqrt{49}$

① 1개 ② 2개 ③ 3개 ④ 4개 ⑤ 5개

5. 다음 수직선 위의 점 P, Q, R, S 중에서 $-\sqrt{2}$ 에 대응하는 점은?

- ④ S ⑤ 답이 없다.
- ① P ② Q ③ R

6. 다음 수직선에서 D 구간에 위치하는 무리수는?

① $3\sqrt{5}$ ② $2\sqrt{2}$ ③ $6\sqrt{2}$ ④ $4\sqrt{2}$ ⑤ $\sqrt{50}$

7. $\sqrt{15} \times \sqrt{20} = a\sqrt{3}$ 일 때, a 의 값은?

① 8 ② 10 ③ 12 ④ 15 ⑤ 18

8. 다음 식을 간단히 한 것 중 옳은 것을 <u>모두</u> 고른 것은?

 $\bigcirc \bigcirc, \bigcirc, \bigcirc \bigcirc$ $\bigcirc \bigcirc, \bigcirc, \bigcirc, \bigcirc$ $\textcircled{4} \ \textcircled{2}, \textcircled{2}, \textcircled{4} \qquad \qquad \textcircled{5} \ \textcircled{5}, \textcircled{0}, \textcircled{4}$

 \bigcirc \bigcirc , \bigcirc , \boxminus

9. $2 < \sqrt{x} \le 4$ 인 정수 x가 a개라 할 때, a의 값을 구하여라.

▶ 답: ____

10. 제곱근표에서 $\sqrt{3}=1.732$ $\sqrt{30}=5.477$ 일 때, $\sqrt{0.03}$ 와 $\sqrt{0.003}$ 의 값으로 바르게 짝지어진 것은?

① 0.001732, 0.5477 ② 0.05477, 0.1732

 \bigcirc 0.1732, 0.001732

11.	a > 0 일 때, 다음 중 옳은 것을 모두 골라라.
	⊙ 0 의 제곱근은 0 뿐이다.
	© 음수의 제곱근은 1개이다.
	© 제곱근은 항상 무리수이다.
	\bigcirc $-\sqrt{a}$ 는 $-a$ 의 음의 제곱근이다.
	> 답:
	> 답:

12.
$$A = (-\sqrt{9})^2 - (-\sqrt{5})^2 - \sqrt{(-2)^2}, B = \sqrt{8^2} \div (-\sqrt{2})^2 + \sqrt{(-5)^2} \times \left(\sqrt{\frac{1}{5}}\right)^2$$
일 때, AB 의 값을 구하면?

① -60 ② -48 ③ 10 ④ 48 ⑤ 60

13. 0 < a < 1 일 때, $\sqrt{(a-1)^2} - \sqrt{(1-a)^2}$ 를 간단히 하라.

▶ 답: _____

14. $9 < \sqrt{2x+30} < 12$ 일 때, $\sqrt{2x+30}$ 을 정수가 되게 하는 자연수 x 의 값을 구하여라.

답: x = _____

15. 다음 수를 큰 순서대로 바르게 나열한 것은?

$$\sqrt{(-3)^2}$$
, -3 , $-\sqrt{3}$, $-\frac{1}{3}$, $-\frac{1}{\sqrt{3}}$

- ① $-3 > -\sqrt{3} > -\frac{1}{\sqrt{3}} > -\frac{1}{3} > \sqrt{(-3)^2}$ ② $-3 > -\frac{1}{3} > -\frac{1}{\sqrt{3}} > -\sqrt{3} > \sqrt{(-3)^2}$ ③ $\sqrt{(-3)^2} > -\frac{1}{3} > -\frac{1}{\sqrt{3}} > -\sqrt{3} > -3$ ④ $\sqrt{(-3)^2} > -3 > -\sqrt{3} > -\frac{1}{3} > -\frac{1}{\sqrt{3}}$ ⑤ $-\frac{1}{3} > \sqrt{(-3)^2} > -\sqrt{3} > -3 > -\frac{1}{\sqrt{3}}$

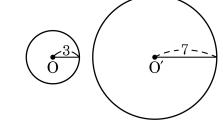
16. 다음 보기 중 옳은 것을 모두 골라라.

보기
$\bigcirc \frac{1}{\sqrt{5}}$ 는 자연수가 아니다.
, •
$\bigcirc 3\sqrt{4}$ 는 무리수이다.
\bigcirc $\sqrt{0.01}$ 는 정수가 아닌 유리수이다.
extstyle ex

▶ 답: _____

▶ 답: _____

17. 다음 중 옳은 것은?


① $\sqrt{2}$ 와 $\sqrt{3}$ 사이에는 무리수가 없다.

- ② $\frac{1}{2}$ 와 $\frac{1}{3}$ 사이에는 1 개의 유리수가 있다. ③ $-\frac{5}{2}$ 와 $\sqrt{3}$ 사이에는 5 개의 정수가 있다
- ④ 모든 실수는 수직선 위에 나타낼 수 있다.
- ⑤ 수직선 위에는 무리수에 대응하는 점이 없다.

18.
$$\sqrt{\frac{2}{7}} \div \sqrt{2} \div \frac{1}{\sqrt{14}}$$
 을 계산하여라.

ひ답: _____

19. 다음 그림과 같은 두 원 O, O'의 넓이의 합과 같은 넓이를 갖는 원의 반지름의 길이는?

① $\sqrt{21}$ ② $\sqrt{30}$ ③ $\sqrt{49}$ ④ $\sqrt{52}$ ⑤ $\sqrt{58}$

20. $\sqrt{90-x} - \sqrt{7+x}$ 의 값이 가장 큰 자연수가 되도록 하는 자연수 x의 값은?

① 5 ② 9 ③ 15 ④ 26 ⑤ 30