방정식  $(x-1)^2 + |x-1| - 6 = 0$ 의 두 근의 합은? 1.

> ① -1 ② 1 **4** 3 **5** 6

( i )x ≥ 1 일 때

 $x^2 - 2x + 1 + x - 1 - 6 = 0$ 

 $x^2 - x - 6 = 0$ , (x - 3)(x + 2) = 0이므로 x = -2, x = 3

그런데  $x \ge 1$ 이므로 x = 3

( ii )x < 1 일 때

 $x^2 - 2x + 1 - x + 1 - 6 = 0$ 

 $x^{2} - 3x - 4 = 0, (x - 4)(x + 1) = 0$ 

x = -1, x = 4그런데 x < 1이므로 x = -1

( i ),(ii)에서 x=3,-1이므로 두 근의 합은 2

- 2.  $x^2-2x+3=0$ 의 두 근을  $\alpha$ ,  $\beta$ 라고 할 때,  $(\alpha^2-2\alpha)(\beta^2-2\beta)$ 의 값을 구하여라.

▷ 정답: 9

해설

▶ 답:

 $x^2 - 2x + 3 = 0$  에서 근과 계수의 관계에 의해  $\alpha + \beta = 2, \ \alpha\beta = 3$ 

 $(\alpha^2 - 2\alpha)(\beta^2 - 2\beta)$ 

 $=\alpha^2\beta^2 - 2\alpha^2\beta - 2\alpha\beta^2 + 4\alpha\beta$  $= (\alpha \beta)^2 - 2\alpha \beta (\alpha + \beta) + 4\alpha \beta$ 

 $= 9 - 6 \cdot 2 + 12 = 9$ 

**3.** A, B두 사람이 이차방정식  $ax^2 + bx + c = 0$ 을 푸는데 A는 b를 잘못 읽어 -4와 7을, B는 c를 잘못 읽어  $-3 \pm \sqrt{2}i$ 를 근으로 얻었다. 원래의 두 근의 합을 구하여라.

답:

▷ 정답: -6

 $A \vdash a$ 와 c를 바르게 읽었으므로

근과 계수와의 관계에서  $\frac{c}{a} = -4 \cdot 7 = -28, c = -28a$ 

 $a = -4 \cdot t = -28, c = -28a$ B는 a와 b는 바르게 읽었으므로

 $-\frac{b}{a} = (-3 + \sqrt{2}i) + (-3 - \sqrt{2}i) = -6, b = 6a$ 

따라서 원래의 이차방정식은  $ax^2 + 6ax - 28a = 0$ 

근과 계수와의 관계에 의해 두 근의 합은 -6

- **4.** 이차방정식  $x^2 + 2(k-1)x + 3 - k = 0$ 의 두 근이 모두 양수가 되도록 하는 상수 k의 범위는?
  - ③  $2 \le k < 3$
  - ①  $k \le -1, \ k \ge 2$  ②  $k \le -1$
- 4 1 < k < 3
- ⑤  $k \le -1, \ 2 \le k < 3$

 $\bigcirc$  두 근이 실수가 되어야 하므로  $\frac{D}{4} \ge 0$ 

 $\frac{D}{4} = (k-1)^2 - (3-k) = k^2 - k - 2 \ge 0$  $(k-2)(k+1) \ge 0$ 

 $\therefore \ k \le -1, k \ge 2 \cdots \bigcirc$ 

- © 둘 다 양수이려면 합 > 0 이고, 곱 > 0
- $-2(k-1) > 0, \ 3-k > 0 \cdots \oplus$  $\therefore k < 1$

- **5.** 이차함수  $y = x^2 kx + 4$  의 그래프와 x축이 서로 다른 두 점에서 만날 때, 실수 k의 값 또는 k의 값의 범위를 구하면?

- ① k < -4 또는 k > 4 ② k < -2 또는 k > 2 ③ k < -1 또는 k > 1 ④  $k < -\frac{2}{3}$  또는  $k > \frac{2}{3}$  ⑤  $k < -\frac{1}{4}$  또는  $k > \frac{1}{4}$

이차방정식  $x^2-kx+4=0$  에서  $D=(-k)^2-4\cdot 1\cdot 4=k^2-16$   $D=K^2-16>0$ 이어야 하므로 (k+4)(k-4)>0∴ k < -4 또는 k > 4

6. 이차함수 y = f(x) 의 그래프가 다음 그림과 같을 때, 이차함수 f(x+a) = 0 의 두 실근의 합이 5 가 되도록 하는 상수 *a* 의 값은?

<u>1</u> –3 **4** 0

② -2③ -1 ⑤ 1

y=f(x)

해설

y=f(x+a) 의 그래프는 y=f(x) 의 그래프를 x 축의 방향으로 -a 만큼 평행이동한 것이다. y = f(x) 이 그래프가

x 축과 만나는 점의 좌표가 -2,1 이므로

y = f(x + a) 의 그래프가 x 축과 만나는 점의 좌표는 -2 - a, 1 - a

따라서, 방정식 f(x+a) = 0 의 두 실근이

-2-a, 1-a이고 그 합이 5 이므로 -2 - a + 1 - a = 5

 $\therefore a = -3$ 

7. 이차함수  $y = x^2 - ax + 1$  의 그래프가 x 축과 만나지 않을 때, f(a) = $a^2 - 2a + 2$  의 최솟값은?

① 1 ② 2 ③ 3 ④  $\sqrt{2}$  ⑤ 5

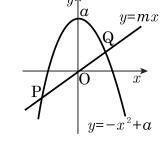
해설 x 축과 만나지 않으려면

판별식이 0 보다 작아야 한다.  $\Rightarrow D = a^2 - 4 < 0$ 

∴ -2 < a < 2 $f(a) = (a-1)^2 + 1$ 

∴ a = 1 일 때, 최솟값 1

8. 다음 그림과 같이 이차함수  $y = -x^2 + a$ 의 그래프와 직선 y = mx가 서로 다른 두 점 P, Q에서 만난다. 점 Q의 x좌표가  $\sqrt{5}-1$ 일 때, a+m의 값을 구하여라. (단, a, m은 유리수)



▷ 정답: 6

▶ 답:

 $y = -x^2 + a$  와 y = mx 가 만나는 두 점 P, Q 의 x 좌표는 방정식이  $-x^2 + a = mx$  의 근이다. 점 Q의 x 좌표가  $\sqrt{5} - 1$ 이므로 방정식  $x^2 + mx - a = 0$ 의 한 근이  $\sqrt{5} - 1$ 이다. 그런데 a 와 m 이 유리수이므로 다른 한 근은  $-\sqrt{5}-1$  이다. 따라서, 이차방정식의 근과 계수의 관계에 의하여

 $-m = (\sqrt{5} - 1) + (-\sqrt{5} - 1) = -2$ 

 $-a = (\sqrt{5} - 1)(-\sqrt{5} - 1) = -4$   $\therefore a = 4, \ m = 2 \qquad \therefore a + m = 6$ 

- 9. 이차함수  $y = -x^2 2ax + 4a 4$ 의 최댓값을 M이라 할 때, M의 최솟값을 구하여라.
  - 답:

▷ 정답: -8

 $y = -x^2 - 2ax + 4a - 4 = -(x+a)^2 + a^2 + 4a - 4$ 

이므로 x = -a일 때 최댓값  $a^2 + 4a - 4$ 를 가진다.  $\therefore M = a^2 + 4a - 4 = (a+2)^2 - 8$ 따라서  $M \stackrel{.}{\subset} a = -2$ 일 때 최댓값 -8을 가진다.

10. 이차식  $x^2 - xy - 2y^2 - ax - 3y - 1$  이 x, y 에 관한 두 일차식의 곱으로 인수분해 되는 모든 상수 a 의 값의 합은?

 $\bigcirc \frac{3}{2}$  3 2  $\bigcirc \frac{5}{2}$  5 3 ① 1

(주어진 식) = 0이라 놓고 x에 관하여 정리하면  $x^2 - (a+y)x - (2y^2 + 3y + 1) = 0$ 근의 공식에서

 $x = \frac{a + y \pm \sqrt{(a + y)^2 + 4(2y^2 + 3y + 1)}}{2}$  $= \frac{a + y \pm \sqrt{9y^2 + 2(a + 6)y + a^2 + 4}}{2}$ 

주어진 식이 x, y에 관한 일차식으로 인수분해되려면 근호 안의 식(= D) 이 완전제곱 꼴이어야 한다.  $D = 9y^2 + 2(a+6)y + a^2 + 4$ 의 판별식이 0 이 되어야 하므로

 $\frac{D'}{4} = (a+6)^2 - 9(a^2+4) = -8a^2 + 12a = 0$   $\therefore a = 0 \, \text{EL} \, a = \frac{3}{2}$   $\therefore 0 + \frac{3}{2} = \frac{3}{2}$ 

**11.** 이차방정식  $x^2 - (p+4)x + q - 2 = 0$ 의 두 근의 차가 2가 되는 q의 최솟값은 ?

① 5 ② 4 ③ 3 ④ 2 ⑤1

이차방정식  $x^2-(p+4)x+q-2=0$ 의 두 근을  $\alpha$ ,  $\alpha+2$ 라고하면  $|\alpha+2-\alpha|=\frac{\sqrt{(p+4)^2-4(q-2)}}{1}=|2|$   $\sqrt{p^2+8p+16-4q+8}=2$  양변을 제곱하여 q에 관해 정리하면  $4=p^2+8p+16-4q+8, \ 4q=p^2+8p+20$   $q=\frac{1}{4}p^2+2p+5=\frac{1}{4}(p+4)^2+1$   $\therefore \ p=-4$ 일 때 q=1로 최솟값을 가진다.

두 근을  $\alpha, \beta$ 라 하면  $\alpha + \beta = p + 4, \alpha\beta = q - 2$  두 근의 차가 2이므로  $|\alpha - \beta| = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = 2$   $\sqrt{(p + 4)^2 - 4(q - 2)} = 2$  양변을 제곱하면  $(p + 4)^2 - 4(q - 2) = 4$  q에 대해 정리하면  $q = \frac{1}{4}(p + 4)^2 + 1$   $\therefore p = -4$ 일 때 q = 1로 최솟값을 가진다.

해설

**12.**  $x^2 - 2x - y = 0$  일 때,  $3x^2 - 2y$  의 최솟값을 구하여라.

답:

▷ 정답: -4

해설

 $x^2 - 2x - y = 0$  에서  $y = x^2 - 2x$ 이 식을  $3x^2 - 2y$  에 대입하면

 $3x^2 - 2(x^2 - 2x) = x^2 + 4x = (x+2)^2 - 4$ 따라서, x = -2 일 때, 최솟값 -4 를 갖는다.

**13.** x 가 실수일 때,  $x^2 + 4y^2 - 8x + 16y - 4 = 0$  을 만족하는 y 의 최솟값을 구하여라.

▶ 답:

▷ 정답: -5

해설

준식을 x 에 관하여 정리하면

 $x^2 - 8x + 4y^2 + 16y - 4 = 0$ 이것은 x 에 대한 이차 방정식으로 볼 때

x 가 실수이므로 실근을 갖는다. ∴ D/4 = (-4)² - (4y² + 16y - 4) ≥ 0

 $4y^2 + 16y - 20 \le 0$ 

 $\rightarrow (y+5)(y-1) \le 0$ 

∴ -5≤y≤1∴ y의 최댓값은 1, 최솟값은 -5

14.  $x^2 - 3x + 1 = 0$ 의 두 근을  $\alpha, \beta$ 라 하고,  $g(x) = x^3 - x^2 - 3x + 3$ 라 할 때,  $g(\alpha) \cdot g(\beta)$ 의 값은?

해설

① 1 ② 3 ③ 8 ④ 11 ⑤ 13

근과 계수와의 관계에서  $\alpha + \beta = 3$ ,  $\alpha\beta = 1$ 또,  $g(x) = x^3 - x^2 - 3x + 3$ =  $(x^2 - 3x + 1)(x + 2) + 2x + 1$ 

 $= (x^2 - 3x + 1)(x + 2) + 2x + 1$  $\alpha, \beta = x^2 - 3x + 1 = 0$ 의 근이므로

 $g(\alpha) = 2\alpha + 1, \ g(\beta) = 2\beta + 1$  $\therefore \ g(\alpha)g(\beta) = (2\alpha + 1)(2\beta + 1)$ 

 $= 4\alpha\beta + 2(\alpha + \beta) + 1$ 

=4+6+1=11

## **15.** 다음 이차방정식을 풀면?

$$(1-i)x^2 + (1+i)x - 2 = 0$$

- ① x = -1 또는 x = -i
- ⑤  $x = 1 \, \text{\Psi_L} \, x = -1 + i$

## 해설 $x^2$ 의 계수를 실수로 만들기 위해 양변에 1+i를 곱하면

 $(1+i)(1-i)x^2 + (1+i)^2x - 2(1+i) = 0$  $2x^2 + 2ix - 2(1+i) = 0$  $(x-1) \{x + (1+i)\} = 0$  $\therefore x = 1 \, \, \underline{\Xi} \, \underline{L} \, x = -1 - i$ 

## **16.** 다음 방정식의 해는?

$$x^2 - 5|x| + 6 = 0$$

①  $0, \pm 1$  ②  $0, \pm 2$  ③  $\pm 1, \pm 2$ 

4 ±2, ±3 5 ±3, ±4

(i)  $x^2 - 5|x| + 6 = 0$ 에서  $x \ge 0$ 일 때,

 $x^2 - 5x + 6 = 0$ 

(x-2)(x-3) = 0

 $\therefore x = 2$ , 또는 x = 3(ii) x < 0일 때,

 $x^2 + 5x + 6 = 0$ 

(x+2)(x+3) = 0

 $\therefore x = -2, \, \stackrel{\rightharpoonup}{\sqsubseteq} x = -3$ ( i ),(ii)에서  $x = \pm 2$ ,  $x = \pm 3$ 

**17.** 방정식  $x^2 - 4x + y^2 - 8y + 20 = 0$ 을 만족하는 실수 x, y에 대하여 x + y의 값을 구하여라.

**■** 답:

▷ 정답: 6

 $x^{2} - 4x + y^{2} - 8y + 20 = (x - 2)^{2} + (y - 4)^{2} = 0$  $\therefore x = 2, y = 4$ 

 $\therefore x + y = 6$ 

 $x^2 - 4x + y^2 - 8y + 20 = 0$ 이 실근을 가지므로

해설

 $D/4 = 4 - (y^2 - 8y + 20) \ge 0$  $y^2 - 8y + 16 \le 0$ 

 $(y-4)^2 \le 0, \ y=4$ 

준식에 대입하면 x=2

따라서 x + y = 6

- **18.** 이차방정식  $x^2 + 2(k-m)x + (k^2 n + 4) = 0$ 이 실수 k값에 관계없이 중근을 가질 때, 실수 m+n의 값은?
- ① 2 ② 3 ③ 4 ④ 5 ⑤ 6

해설 중근을 가지려면 판별식이 0이다.

 $D' = (k - m)^2 - (k^2 - n + 4) = 0$ 모든 k에 대해 성립하려면 -2m = 0, 그리고  $m^2 + n - 4 = 0$  $\therefore m = 0, \quad n = 4, \quad m + n = 4$ 

19. 이차방정식  $x^2-7x+1=0$ 의 두 근을  $lpha,\ eta$ 라 할 때,  $\sqrt{lpha}+\sqrt{eta}$ 의 값은?

- ① 3 6 ④ 8 ⑤ 12

해설

 $x^2 - 7x + 1 = 0$ 의 두 근이  $\alpha, \beta$ 이므로  $\alpha + \beta = 7, \, \alpha\beta = 1$ 

 $(\sqrt{\alpha} + \sqrt{\beta})^2 = \alpha + 2\sqrt{\alpha\beta} + \beta = 7 + 2 = 9$ 

따라서  $\sqrt{\alpha} + \sqrt{\beta} = 3$ 

**20.** 이차함수  $y = x^2 - 6x + 12$  의 그래프와 직선 y = 2x + k 가 만나기 위한 *k* 의 최솟값은?

① -1 ② -2 ③ -3 ④ -4 ⑤ -5

해설 두 그래프가 만나려면 연립 방정식의 판별식이

0 보다 크거나 같아야 한다.  $\Rightarrow 2x + k = x^2 - 6x + 12$   $\Rightarrow x^2 - 8x + 12 - k = 0$   $\frac{D}{4} = 4^2 - 12 + k \ge 0$   $\Rightarrow k \ge -4$ 

:. 최솟값: -4

21. 다음과 같은 포물선과 직선이 있다.

$$y = x^{2} + (m-1)x + m^{2} + 1$$

$$y = x + 1$$

포물선이 직선보다 항상 위쪽에 존재하도록 m의 범위를 정하여라.

- ① m < -2,  $m > \frac{2}{3}$ ② m < -1,  $m > \frac{2}{3}$ ③ m < -2, m > 2③ m < -5,  $m > \frac{2}{3}$ 

  - 해설

$$x^2 + (m-1)x + m^2 + 1 > x + 1$$
을 항상 만족시키도록  $m$ 을 정하면 된다. 
$$x^2 + (m-2)x + m^2 > 0$$
에서 판별식 
$$D = (m-2)^2 - 4m^2 < 0,$$
 
$$(m-2+2m)(m-2-2m) < 0$$
 
$$(3m-2)(m+2) > 0$$

$$(m-2) - 4m < 0,$$

$$(m-2+2m)(m-2-2m) < 0$$

$$(3m-2)(m+2) > 0$$

$$\therefore m < -2, m > \frac{2}{3}$$

- **22.** 다음 그림과 같이 이차함수  $y = x^2 + b$  의 그래프와 직선 y = ax 가 서로 두 점에서 만나고, 한 교점의 x 좌표가  $2 + \sqrt{3}$  일 때, a + b 의 값은?(단, a, b 는 유리수)
  - ① 1 ② 2 ③ 3 ④ 4 ⑤5
- $y=x^2+b$

 $x^2 + b = ax,$ 

해설

즉  $x^2 - ax + b = 0$  의 한 근이  $2 + \sqrt{3}$  이다.

이때, a, b 는 모두 유리수이므로

방정식  $x^2 - ax + b = 0$  의 한 근이  $2 + \sqrt{3}$  이면

다른 한 근은  $2 - \sqrt{3}$  이다. 따라서 근과 계수와의 관계에 의하여

 $a = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4,$  $b = (2 + \sqrt{3})(2 - \sqrt{3}) = 1$ 

 $\therefore a+b=5$ 

- **23.**  $a^2 + b^2 = 5$  인 관계에 있는 두 실수 a,b에 대하여  $f(x) = x^2 4ax + b^2$ 의 최솟값을 상수 k라 할 때, k의 최댓값은?



 $f(x) = x^2 - 4ax + b^2$ 

해설

$$= (x - 2a)^{2} + b^{2} - 4a^{2} \circ ||\mathcal{A}||$$

$$b = b^{2} - 4a^{2} - (5 - a^{2}) - 4a^{2} - a^{2}$$

$$k = b^2 - 4a^2 = (5 - a^2) - 4a^2 = -5a^2 + 5$$
  
 : 따라서  $k$ 의 최댓값은  $5$ 

**24.** 함수  $y = (x^2 - 2x + 3)^2 - 2(x^2 - 2x + 3) + 1$  의 최솟값을 구하여라.

답:

▷ 정답: 1

해설

 $t = x^2 - 2x + 3$  으로 놓으면

 $y = t^2 - 2t + 1 = (t - 1)^2 \cdots \bigcirc$ 또,  $t = (x - 1)^2 + 2$  이므로  $t \ge 2 \cdots \bigcirc$  $\bigcirc$ 의 범위에서  $\bigcirc$ 의 최솟값은 t = 2일 때 1이다.

\_\_\_\_\_