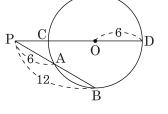
1. 다음은 학생 20 명의 턱걸이 횟수에 대한 도수분포표이다. 이 분포의 분산은?(단, 평균, 분산은 소수 첫째자리에서 반올림한다.)

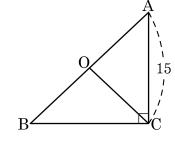

계급	도수
3 ^{이상} ∼ 5 ^{미만}	6
5 ^{이상} ~ 7 ^{미만}	3
7 ^{이상} ∼ 9 ^{미만}	8
9 ^{이상} ~ 11 ^{미만}	3
합계	20

해설

① 1 ② 2 ③ 3 ④ 4

학생들의 턱걸이 획수의 평균은 (평균) = $\frac{\{(계급값) \times (도수)\} \ \, 의 \, \&u}{(도수) \ \, \, | \&u}$ $= \frac{4 \times 6 + 6 \times 3 + 8 \times 8 + 10 \times 3}{20}$ $= \frac{24 + 18 + 64 + 30}{20} = 6.8(회)$ 이므로 소수 첫째자리에서 반올림하면 7(회)이다. 따라서 구하는 분산은 $\frac{1}{20} \left\{ (4-7)^2 \times 6 + (6-7)^2 \times 3 + (8-7)^2 \times 8 + (10-7)^2 \times 3 \right\}$ $= \frac{1}{20}(54 + 3 + 8 + 27) = 4.6$ 이므로 소수 첫째자리에서 반올림하면 5이다.

2. 다음 그림의 원 O 에서 $\overline{PA}=6, \overline{PB}=12$, 반지름의 길이가 6 일 때, \overline{PO} 의 길이를 구하여라.



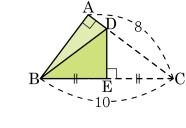
답:▷ 정답: 6√3

해설

 $\overline{\mathrm{PO}}=x$ 라 하면 $(x-6)(x+6)=6\times 12$ $x^2-36=72, x^2=108, x=6\sqrt{3}$

3. 다음 그림에서 점 $O \vdash \angle C = 90\,^{\circ}$ 인 직각삼각형의 외심이다. $\triangle AOC$ 의 넓이가 $60\,^{\circ}$ 일 때, \overline{BC} 의 길이를 구하여라.

답:

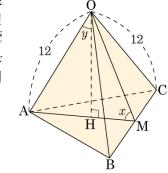

▷ 정답: 16

변 OC 는 ΔABC의 넓이를 이등분하므로

 $\triangle ABC$ 의 넓이는 $60 \times 2 = 120$ 이다. 높이가 15이고, 삼각형의 넓이가 120이므로 $\frac{1}{2} \times \overline{BC} \times 15 = 120$

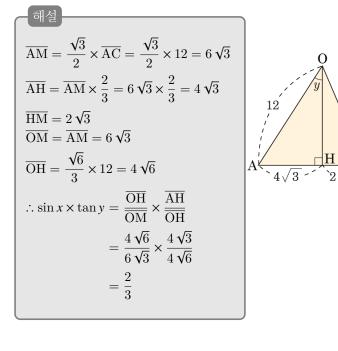
 $\therefore x = 16$

4. 다음 그림에서 $\angle A=90^\circ$ 인 $\triangle ABC$ 를 선분 DE 를 접는 선으로 하여 꼭짓점 B 와 C 를 일치하게 접었을 때, $\overline{\mathrm{AD}}$ 의 값은?

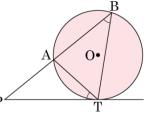

- ① $\frac{1}{5}$ ② 3 ③ $\frac{3}{4}$

∠C 는 공통, ∠CED = ∠CAB 이므로 △CED ∽ △CAB (AA 닮음)

 $\overline{\text{CE}} : \overline{\text{CA}} = \overline{\text{CD}} : \overline{\text{CB}}$ $5 : 8 = \overline{\text{CD}} : 10$


 $8\overline{\text{CD}} = 50 \qquad \therefore \overline{\text{CD}} = \frac{25}{4}$ $\therefore \overline{\text{AD}} = 8 - \frac{25}{4} = \frac{7}{4}$

5. 다음 그림과 같이 모서리의 길이가 12 인 정사면체의 한 꼭짓점 O 에서 밑 면에 내린 수선의 발을 H 라 하고, $\overline{\mathrm{BC}}$ 의 중점을 M 이라 하자. $\angle OMH = x$, $\angle AOH = y$ 라 할 때, $\sin x \times \tan y$ 의 값을 구하여라.



답:

ightharpoonup 정답: $rac{2}{3}$

다음은 원 ○의 외부에 있는 한 점 P에서 이 원에 그은 접선과 할선이 원 ○와 만나는 점을 각각 T, A, B라 할 때, PT² = PA × PB 임을 설명한 것이다.
 안에 알맞은 것을 차례로 써넣어라.

보기
 △PAT 와 △PTB 에서
∠PTA = , ∠P는 공통
∴ △PAT ∽△PTB (AA 닮음)
따라서 \overline{PA} : \overline{PB}
즉, $\overline{} = \overline{PA} \times \overline{PB}$ 이다.

답:답:

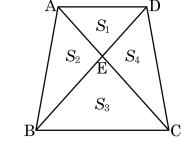
답:

▶ 답:

▷ 정답: ∠PBT

 ▷ 정답:
 ₱₸

 ▷ 정답:
 ₱₸


ightharpoons 정답: $\overline{ ext{PT}}^2$

해설 ΔPAT와 ΔPTB에서

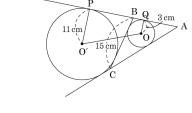
∠PTA = ∠PBT, ∠P는 공통 ∴ △PAT ∽ △PTB (AA 닮음)

따라서 $\overline{PA} : \overline{PT} = \overline{PT} : \overline{PB}$ 즉, $\overline{PT}^2 = \overline{PA} \times \overline{PB}$ 이다.

7. 다음과 같이 $\overline{\rm AD}//\overline{\rm BC}$, $\overline{\rm AD}$: $\overline{\rm BC}=2:3$ 인 사다리꼴 ABCD 를 대 각선을 따라 네 부분으로 나누었다. 이때, $\frac{S_1+S_3}{S_2+S_4}$ 의 값을 구하여라.

ightharpoonup 정답: $rac{13}{12}$

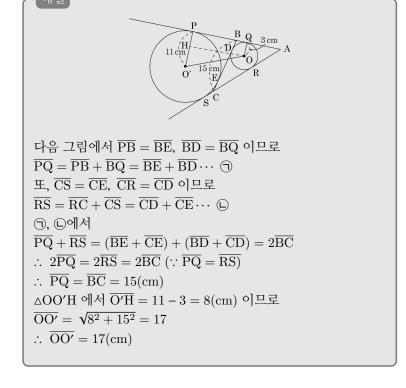
답:


삼각형 ADE 와 BCE 는 닮은 도형이고, 닮음비는 2:3 이므로

넓이비는 4:9 삼각형 ADE 의 넓이를 4S , BCE 의 넓이를 9S 라 하면 $\triangle ABE : \triangle ADE = 3 : 2, \ \triangle ABE = 6S$,

 $\triangle CDE : \triangle ADE = 3 : 2, \ \triangle CDE = 6S$

 $\therefore \frac{S_1 + S_3}{S_2 + S_4} = \frac{4S + 9S}{6S + 6S} = \frac{13}{12}$


8. 다음 그림에서 원 O, O' 은 각각 $\triangle ABC$ 의 내접원, 방접원이다. $\overline{O'P}=11cm, \ \overline{OQ}=3cm, \ \overline{BC}=15cm$ 일 때, $\overline{O'O}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

정답: 17 <u>cm</u>

답:

