1. $\sqrt{a^2} = 4$ 일 때, a 의 값을 구하여라.

① 2 ② -2 ③ ±2 ④ 4 ⑤ ±4

양변을 제곱하면, $a^2 = 16$ ∴ $a = \pm 4$

- **2.** 16 의 제곱근 중 작은 수와 121 의 제곱근 중 큰 수의 합을 구하면?
 - ① -7 ② 4

- ③ 7 ④ 15 ⑤ 20

해설

16 의 제곱근은 ±4 이고 121 의 제곱근은 ±11 이다. 16 의 제곱근 중 작은 수는 -4 이고 121 의 제곱근 중 큰 수는 11 이다. 11 - 4 는 7 이다.

3. 다음 중 제곱근을 구할 수 없는 수를 <u>모두</u> 고르면?

① -4 ② 4 ③ -2 ④ 2 ⑤ 0

에실 음수의 제곱근은 존재하지 않는다.

4. 다음 중 근호를 사용하지 않고 나타낼 수 $\frac{1}{1}$ 었을 모두 골라라.

 $\bigcirc \sqrt{0.81}$ $\bigcirc \sqrt{0.1}$ $\bigcirc \sqrt{121}$ $\bigcirc \sqrt{13}$ $\bigcirc -\sqrt{\frac{4}{25}}$

▶ 답:

답:

 ▷ 정답:
 ©

 ▷ 정답:
 ②

\bigcirc $\sqrt{0.81}$ 은 0.81 의 양의 제곱근이므로 0.9이다.

- ① $\sqrt{0.1}$ 는 0.1 의 양의 제곱근이다. 근호를 사용하지 않고 나타 낼 수 없다.
- © $\sqrt{121}$ 은 121 의 양의 제곱근이므로 11이다. @ $\sqrt{13}$ 는 13 의 양의 제곱근이다. 근호를 사용하지 않고 나타낼
- 수 없다.

- 5. x > 2 일 때, 다음 중 $\sqrt{(x-2)^2} \sqrt{(2-x)^2}$ 의 값은?
 - ① -2 ② -1 ③ 0 ④ 1 ⑤ 2

x > 2이므로 x - 2 > 0, 2 - x < 0(준식) = $(x-2) - \{-(2-x)\}$ = (x-2) - (x-2) = 0

- 6. 3 < x < 4 일 때, $\sqrt{(3-x)^2} \sqrt{(x-4)^2}$ 을 간단히 하면?
 - $\bigcirc 2x 7$ $\bigcirc 2x 9$

해설

- ① 2x-1 ② 2x-3 ③ 2x-5

3 - x < 0이고 x - 4 < 0 이므로 (준식)=-(3-x)+(x-4)=2x-7

7.
$$\sqrt{(2-\sqrt{5})^2} + \sqrt{(2+\sqrt{5})^2}$$
 의 식을 간단히 하면?

① $\sqrt{5}$ ② 0 ③ $2\sqrt{5}$

 $\textcircled{4} \ 4 \qquad \qquad \textcircled{5} \ 2\sqrt{5} + 4$

이 된 $\sqrt{5} > 2$ 이 프로 $\sqrt{(2 - \sqrt{5})^2} + \sqrt{(2 + \sqrt{5})^2} = -2 + \sqrt{5} + 2 + \sqrt{5}$ $= 2\sqrt{5}$

- 8. $\sqrt{3} \times \sqrt{9} \times \sqrt{27} \times \sqrt{15} \times \sqrt{20} \times \sqrt{21}$ 을 간단히 하면?
 - ① $90\sqrt{7}$ ② $270\sqrt{7}$ **4** 90
- $3810\sqrt{7}$

⑤ 270

(준식)

해설

 $= \sqrt{3} \times 3 \times 3 \sqrt{3} \times \sqrt{3} \times \sqrt{5} \times 2 \sqrt{5} \times \sqrt{3} \times \sqrt{7}$ $= 81 \times 5 \times 2 \sqrt{7}$

 $=810\,\sqrt{7}$

- 9. $-\sqrt{3} \times \sqrt{\frac{2}{3}} \times \sqrt{\frac{3}{2}}$ 를 간단히 하면?
 - ① $\sqrt{2}$ ② $-\sqrt{2}$ ③ $\sqrt{3}$ ④ $-\sqrt{3}$ ⑤ $\sqrt{5}$

해설 $-\sqrt{3} \times \sqrt{\frac{2}{3}} \times \sqrt{\frac{3}{2}} = -\sqrt{3} \times \frac{2}{3} \times \frac{3}{2} = -\sqrt{3}$

- ③ $2\sqrt{7} \times 2\sqrt{\frac{3}{7}} = 4\sqrt{3}$ ④ $-3\sqrt{2} \times 2\sqrt{\frac{5}{4}} \times -5\sqrt{\frac{2}{5}} = 30$ ⑤ $\sqrt{12} \times \sqrt{\frac{5}{6}} \times \sqrt{\frac{3}{2}} = \sqrt{5}$

- 11. 넓이가 √18 cm² 인 직사각형의 가로의 길이가 √6 cm 일 때, 세로의 길이는?
 - ① $\sqrt{2}$ cm ② 3 2 cm ④

해설

- \bigcirc $\sqrt{6}$ cm
- 대, 세로의 길이는?
 ② √3 cm
 ④ √5 cm

 $\sqrt{6}x = \sqrt{18}$ 이다. 따라서 $x = \sqrt{3}$ cm 이다.

12. $\frac{\sqrt{20}}{\sqrt{5}} \times \sqrt{15} \div \sqrt{10}$ 를 간단히 하면?

① $\sqrt{2}$ ② $\sqrt{3}$ ③ 2 ④ $\sqrt{5}$ ⑤ $\sqrt{6}$

 $\frac{\sqrt{20}}{\sqrt{5}} \times \sqrt{15} \div \sqrt{10} = \frac{\sqrt{20}}{\sqrt{5}} \times \sqrt{15} \times \frac{1}{\sqrt{10}}$ $= \sqrt{2} \times \sqrt{3} = \sqrt{6}$

13. 다음 중 $\sqrt{\frac{2}{5}} \div \sqrt{2} \div \frac{1}{\sqrt{15}}$ 를 바르게 계산한 것을 고르면?

① $\sqrt{2}$ ② $\sqrt{3}$ ③ 2 ④ $\sqrt{5}$ ⑤ $\sqrt{6}$

해설 $(준식) = \frac{\sqrt{2}}{\sqrt{5}} \times \frac{1}{\sqrt{2}} \times \sqrt{15}$ $= \frac{\sqrt{15}}{\sqrt{5}}$ $= \sqrt{3}$

- 14. $\sqrt{45} + \sqrt{15} \times \frac{3}{\sqrt{3}} \sqrt{10} \div \sqrt{2} = x\sqrt{5}$ 를 만족하는 상수 x 의 값을 구하여라.
 - 답:

 ▷ 정답:
 5

•

 $\sqrt{9 \times 5} + 3\sqrt{\frac{15}{3}} - \sqrt{\frac{10}{2}} = 3\sqrt{5} + 3\sqrt{5} - \sqrt{5}$ $= 5\sqrt{5}$ $\therefore x = 5$

15. 다음 중 옳은 것은?

- ① $\sqrt{7} \sqrt{3} \sqrt{2} = \sqrt{2}$ $\sqrt{0.02} \times \sqrt{2} = 0.2$
- $4 \ 3\sqrt{2} \times \sqrt{12} \div \frac{1}{\sqrt{3}} = 6\sqrt{2}$

해설

- $4 \ 3\sqrt{2} \times 2\sqrt{3} \times \sqrt{3} = 18\sqrt{2}$ $5 \ 2\sqrt{2} + 3\sqrt{2} 5\sqrt{2} = 0$

16. 다음 $4\sqrt{3}(\sqrt{54} - \sqrt{6}) + \frac{\sqrt{2}}{3} \div \sqrt{8}$ 을 간단히 한 것을 고르면?

①
$$2\sqrt{2} + \frac{1}{2}$$
 ② $3\sqrt{2} + \frac{1}{3}$ ③ $4\sqrt{2} + \frac{1}{4}$ ④ $5\sqrt{2} + \frac{1}{5}$ ⑤ $6\sqrt{2} + \frac{1}{6}$

$$\bigcirc 5\sqrt{2} + \frac{1}{3}$$

$$3) 4 \sqrt{2} + \frac{1}{4}$$

해설 (준식) =
$$\sqrt{162} - \sqrt{18} + \frac{\sqrt{2}}{3} \times \frac{1}{\sqrt{8}}$$
 = $9\sqrt{2} - 3\sqrt{2} + \frac{1}{6}$ = $6\sqrt{2} + \frac{1}{6}$

17. $\frac{4}{\sqrt{3}-2}$ 의 분모를 유리화하면?

- ① $4\sqrt{3} + 8$ ② $-4\sqrt{3} + 8$ ③ $-4\sqrt{3} 8$ ④ $-4\sqrt{3} + 2$ ⑤ $-4\sqrt{3} 2$

$$\frac{4(\sqrt{3}+2)}{(\sqrt{3}-2)(\sqrt{3}+2)} = \frac{4\sqrt{3}+8}{-1} = -4\sqrt{3}-8$$

18. 다음 중 $\frac{\sqrt{2}-1}{\sqrt{2}+1}$ 을 바르게 유리화한 것은?

① $2 - \sqrt{2}$ ② $1 + \sqrt{2}$ ③ $4 - 2\sqrt{2}$

 $4 5 + \sqrt{2}$ $3 - 2\sqrt{2}$

해설 $\frac{(\sqrt{2}-1)^2}{(\sqrt{2}+1)(\sqrt{2}-1)} = 3-2\sqrt{2}$

19. 분수 $\frac{2\sqrt{3}}{2+\sqrt{3}}$ 을 유리화하면?

- ① $4\sqrt{3} + 6$ ② $-6 + 4\sqrt{3}$ ③ $-4\sqrt{3} 6$
- (4) $2\sqrt{7}$ (5) $-5\sqrt{7}+8$
- $\frac{2\sqrt{3}(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})} = 4\sqrt{3}-6$

20. 다음 보기 중 순환하지 않는 무한소수는 <u>모두</u> 몇 개인가?

 $\frac{\sqrt{16}}{3}$, $\sqrt{7} - 4$, 3.14, $0.2\dot{3}$, $-\sqrt{0.01}$, $\sqrt{49}$

① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

해설 순환하지 않는 무한소수는 무리수이다. 즉 무리수가 몇 개인지

고르면 된다. $\frac{\sqrt{16}}{3} = \frac{4}{3} \; (유리수), \; \sqrt{7} - 4 \; (무리수), \label{eq:constraint}$

3.14 (유리수), 0.23 (유리수),

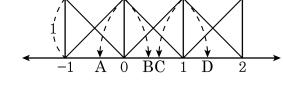
 $-\sqrt{0.01} = -0.1 \text{ (유리수)}, \ \sqrt{49} = 7 \text{ (유리수)}$: 순환하지 않는 무한소수(무리수)는 1 개

- ① $(-\sqrt{0.3})^2$ ② $-\sqrt{1}$ ③ $\sqrt{3.9}$ ④ $\sqrt{\left(-\frac{2}{7}\right)^2}$

해설 $(1-\sqrt{0.3})^2 = 0.3 \ (2-\sqrt{1} = -1)$ $(3\sqrt{3.9}) = \sqrt{\frac{36}{9}} = \sqrt{4} = 2 \ (4)\frac{2}{7}$

22. 다음 중 무리수가 아닌 것은?

③ π

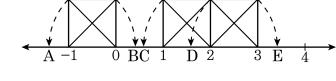

① 1.313131... ② 3.123123412345...

④ $\sqrt{0.2}$

 \bigcirc $\sqrt{2}$

① 1.313131.. = 1.31(순환소수) 이므로 유리수이다.

23. 다음 수직선 위에서 무리수 $-1 + \sqrt{2}$ 에 대응하는 점은?

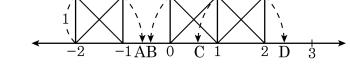


① A ② B ③ C ④ D ⑤ 알수 없다.

해설

 $B:-1+\sqrt{2}$

 ${f 24}$. 다음 그림과 같이 수직선 위에 한 변의 길이가 ${f 1}$ 인 정사각형을 그린 것이다. A, B, C, D, E 의 좌표를 옳게 구한 것은?



- ① $A(-1-\sqrt{2})$ ② $B(\sqrt{2})$ ③ $C(1-\sqrt{2})$

 $A(-\sqrt{2})$, $B(-1+\sqrt{2})$, $C(2-\sqrt{2})$, D(3 - $\sqrt{2})$, $E(2+\sqrt{2})$

이므로 ④이다.

25. 다음 그림을 보고 다음 중 옳지 <u>않은</u> 것을 고르면?

- $\overline{\text{CD}} = -1 + 2\sqrt{2}$ $\overline{\text{SD}} = \sqrt{2}$

해설

⑤ B $(1-\sqrt{2})$, C $(2-\sqrt{2})$ 이므로 $\overline{BC}=(2-\sqrt{2})-(1-\sqrt{2})=1$ 이다.

 ${f 26.}$ $\sqrt{3}=a\;,\;\sqrt{7}=b\;$ 라 할 때, $\sqrt{84}$ 를 a,b 를 사용하여 나타내면?

① \sqrt{ab} ② $2\sqrt{ab}$ ③ $4\sqrt{ab}$ ④ 2ab ⑤ 4ab

 $\sqrt{84} = 2\sqrt{21}$ $= 2\sqrt{3} \times \sqrt{7} = 2ab$

27. $\sqrt{2}=a, \ \sqrt{3}=b, \ \sqrt{5}=c$ 일 때, $\sqrt{360}=6 ()로 나타낼 때, ()에 들어갈 것은?$

① ac ④ bc

해설

② γα γο⑤ abc

② $\sqrt{a}\sqrt{c}$ ③ $\sqrt{b}\sqrt{c}$

·

© ubc

 $\sqrt{360} = \sqrt{3^2 \times 2^3 \times 5} = 6\sqrt{2}\sqrt{5} = 6ac$

28. $\sqrt{2} = x$, $\sqrt{3} = y$ 라고 할 때, 12 를 x, y 를 이용해 나타낸 것으로 옳은것은?

① x^4y^3 ② x^4y^2 ③ x^7 ④ x^3y^3 ⑤ x^3y^4

 $12 = \sqrt{144} = \sqrt{2^4 3^2} = \sqrt{2^4} \times \sqrt{3^2} = x^4 y^2$

29. $2\sqrt{6} \div 3\sqrt{3} \times \frac{3}{\sqrt{2}}$ 을 간단히 하여라.

 답:

 ▷ 정답:
 2

V 86.

 $2\sqrt{6} \div 3\sqrt{3} \times \frac{3}{\sqrt{2}} = 2\sqrt{6} \times \frac{1}{3\sqrt{3}} \times \frac{3}{\sqrt{2}} = 2$

30. $6\sqrt{6} \div 3\sqrt{2} \times 5\sqrt{6} = a\sqrt{2}$ 을 만족하는 유리수 a 의 값은?

① 10 ② 15 ③ 20 ④ 25

 $6\sqrt{6} \div 3\sqrt{2} \times 5\sqrt{6} = \frac{6\sqrt{6}}{3\sqrt{2}} \times 5\sqrt{6}$ $= 2\sqrt{3} \times 5\sqrt{6} = 10\sqrt{3^2 \times 2}$ $= 30\sqrt{2}$ $30\sqrt{2} = a\sqrt{2}$ $\therefore a = 30$

31. $\sqrt{6} \times \sqrt{3} \div \sqrt{12}$ 을 간단히 한 것은?

① $\sqrt{2}$ ② $2\sqrt{2}$ ③ $3\sqrt{2}$ ④ $\frac{\sqrt{6}}{2}$ ⑤ $2\sqrt{2}$

 $\sqrt{6} \times \frac{\sqrt{3}}{\sqrt{12}} = \sqrt{\frac{6 \times 3}{12}} = \sqrt{\frac{18}{12}} = \sqrt{\frac{3}{2}} = \frac{\sqrt{6}}{2}$

32.
$$\sqrt{8} - \frac{1}{\sqrt{18}} + \frac{1}{\sqrt{32}} = k\sqrt{2}$$
 일 때, k 의 값은?

- ① 2 ② $\frac{23}{12}$ ③ $\frac{47}{24}$ ④ 3 ⑤ $\frac{57}{24}$

$$2\sqrt{2} - \frac{1}{3\sqrt{2}} + \frac{1}{4\sqrt{2}} = 2\sqrt{2} - \frac{\sqrt{2}}{6} + \frac{\sqrt{2}}{8}$$
$$= \frac{48\sqrt{2} - 4\sqrt{2} + 3\sqrt{2}}{24}$$
$$= \frac{47\sqrt{2}}{24}$$

$$=\frac{47\sqrt{2}}{24}$$

33.
$$\sqrt{48} - 2\sqrt{3} - \frac{3}{\sqrt{27}}$$
 을 간단히 하면?

- $-\frac{2}{3}\sqrt{3}$ ② $-\frac{3}{4}\sqrt{3}$ ③ $\frac{3}{4}\sqrt{3}$ ④ $\frac{2}{3}\sqrt{3}$ ⑤ $\frac{5}{3}\sqrt{3}$

해설
$$4\sqrt{3} - 2\sqrt{3} - \frac{3}{3\sqrt{3}} = 2\sqrt{3} - \frac{\sqrt{3}}{3} = \frac{5}{3}\sqrt{3}$$

34. 다음 중 계산이 옳은 것은?

- ① $\sqrt{50} + 3\sqrt{2} = 5\sqrt{2} + 3\sqrt{2} = 5\sqrt{5} + 8\sqrt{2}$ ② $\frac{2\sqrt{6}}{3} \sqrt{\frac{2}{3}} = \frac{2\sqrt{6}}{3} \frac{\sqrt{2} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{2\sqrt{6}}{3} \frac{\sqrt{6}}{3} = \frac{2\sqrt{6}}{3}$
- $3 \sqrt{12} 4\sqrt{3} = 8\sqrt{3}$
- $\sqrt{32} \frac{6}{\sqrt{2}} = \sqrt{2}$

$$4 \sqrt{32} - \frac{6}{\sqrt{2}} = 4\sqrt{2} - \frac{6\sqrt{2}}{\sqrt{2} \times \sqrt{2}}$$

$$= 4\sqrt{2} - \frac{6\sqrt{2}}{2}$$

$$= \sqrt{2}$$

- ① $\sqrt{50} + 3\sqrt{2} = 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2}$
- ③ $3\sqrt{12} - 4\sqrt{3} = 3 \times 2\sqrt{3} - 4\sqrt{3} = 2\sqrt{3}$
- $=2\sqrt{3}-\sqrt{2}$

- **35.** x 가 유리수 일 때, $(2+x\sqrt{2})(3-\sqrt{2})$ 가 유리수가 되도록 x 의 값을 정하여라.
 - ▶ 답:

ightharpoonup 정답: $x = \frac{2}{3}$

식 $(2+x\sqrt{2})(3-\sqrt{2})=6-2\sqrt{2}+3x\sqrt{2}-2x$ 가 유리수가 되어야 하므로 $-2\sqrt{2}+3x\sqrt{2}=0$ 이 되어야 한다. 따라서 -2+3x=0이므로 $x = \frac{2}{3}$ 이다.

- **36.** $2\sqrt{6}\left(\frac{1}{\sqrt{3}} \sqrt{6}\right) \frac{a}{\sqrt{2}}(4\sqrt{2} 2)$ 가 유리수가 되도록 유리수 a 의 값을 정하면?
 - ① -1 ② -2 ③ -3 ④ -4 ⑤ -5

기월 $2\sqrt{6} \times \frac{1}{\sqrt{3}} - 2\sqrt{6} \times \sqrt{6} - \frac{a}{\sqrt{2}} \times 4\sqrt{2} + \frac{a}{\sqrt{2}} \times 2$ $= 2\sqrt{2} - 12 - 4a + a\sqrt{2}$ $= \sqrt{2}(2+a) - 12 - 4a$ 유리수가 되기 위해서 a+2=0

37. $2a+8\sqrt{3}-7-4a\sqrt{3}$ 의 값이 유리수가 되도록 하는 유리수 a의 값은?

① 0 ② 1 ③ 2 ④ 3 ⑤ 4

 $2a + 8\sqrt{3} - 7 - 4a\sqrt{3} = 2a - 7 + (8 - 4a)\sqrt{3}$

주어진 식이 유리수가 되기 위해서는 8-4a 의 값이 0 이 되어야한다. $8-4a=0 \qquad \therefore \ a=2$

38. 다음 중 근호를 사용하지 않고 나타낸 것 중 <u>잘못된</u> 것은 모두 몇 개인가?

25 의 제곱근= ± 5 $\sqrt{0.9} = 0.3$ 0.1 의 제곱근= $\pm \frac{1}{9}$ $-\sqrt{\frac{4}{49}} = -\frac{2}{7}$

②2개 ③3개 ④4개 ⑤ 없다

① 1개

해설

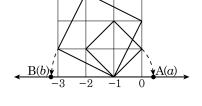
 $\sqrt{0.9} \rightarrow 0.9$ 가 제곱수가 아니므로 근호를 사용하지 않고 나타낼수 없다. $0.\dot{1}$ 의 제곱근 $\rightarrow 0.\dot{1} = \frac{1}{9}$ 이므로 제곱근은 $\pm \frac{1}{3}$ 이다.

39. a > 0 일 때, 다음 중 옳지 <u>않은</u> 것은?

- ① $(\sqrt{a})^2 = a$ ② $(-\sqrt{a})^2 = a$ ③ $-\sqrt{a^2} = -a$
- $(4) \sqrt{(-a)^2} = a$ $(5) \sqrt{(-a)^2} = a$

$$4 - \sqrt{(-a)^2} = -\sqrt{a^2} = -|a| = -a$$

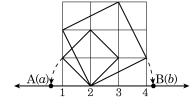
40. a > 0 일 때, 다음 중 옳지 <u>않은</u> 것은?


- ① $\sqrt{a^2} = a$ ② $(-\sqrt{a})^2 = a$ ③ $-\sqrt{(-a)^2} = a$

해설

a > 0 일 때,

- ① $(\sqrt{a} a)^2 = a$ ② $(-\sqrt{a})^2 = a$ ③ $-\sqrt{(-a)^2} = -\sqrt{a^2} = -a$ ④ $(\sqrt{a})^2 = a$ ⑤ $-\sqrt{a^2} = -a$


41. 다음 그림을 보고 옳지 <u>않은</u> 것을 고르면?(단, 모눈 한 칸은 한 변의 길이가 1 인 정사각형이다.)

- ① a 와 b 사이에는 유리수가 무수히 많다.② a 와 b 사이에는 무리수가 무수히 많다.
- ③ A의 좌표는 A(-1 + √2) 이다.
- ④ B의 좌표는 B(-1 √5) 이다.
- \bigcirc a 와 b 의 중점의 좌표는 $\frac{\sqrt{5}-\sqrt{2}}{2}$ 이다.
- ा ध

a 와 b 의 중점의 좌표는 $\frac{(-1-\sqrt{5})+(-1+\sqrt{2})}{2}=\frac{-2-\sqrt{5}+\sqrt{2}}{2}$ 이다.

42. 다음 그림을 보고 옳은 것을 고르면? (단, 모눈 한 칸은 한 변의 길이가 1 인 정사각형이다.)

- © B 의 좌표는 B(2 + √5)이다.

⑤ A 의 좌표는 A(-√2)이다.

- ② a 는 수직선 A 를 제외한 수직선 위의 다른 점에 한 번 더 대응한다.
 ② a , b 사이에는 무수히 많은 실수가 존재한다.

④ ⑤, ◎

 $\textcircled{1} \ \textcircled{3}, \textcircled{L}$

⑤ **②**, **□**

② ①, ⑤

③□, ⊜

③ A 의 좌표는 A(2 - √2) 이다.

© 모든 실수와 수직선 위의 점은 일대일로 대응하므로 a 는

수직선 A 에만 대응한다. \bigcirc a 와 b 는 무리수이다.

- **43.** 다음 중 수직선 위에서 -1 과 $\sqrt{3}$ 사이에 있는 수에 대한 설명으로 옳은 것은?
 - ③ 유리수가 유한개 있다. ④ 무리수는 없다.
 - ① 자연수가 2 개 있다. ② 정수가 3 개 있다.
 - ⑤ 실수는 무수히 많다.
- 해설

$1 < \sqrt{3} < 2$ 이므로 범위는 $-1 \sim 1. \times \times \times$

- ① 자연수가 2 개 있다. → 자연수는 1, 한 개 있다.
- ② 정수가 3 개 있다. → 정수는 0, 1 . 두 개 있다. ③ 유리수가 유한개 있다. → 무수히 많다.
- ④ 무리수는 없다. → 무수히 많다.

44. 다음 중 옳은 것은 모두 몇 개인가?

①
$$3 - \sqrt{3} < -\sqrt{3}$$

② $3 - \sqrt{5} > \sqrt{5} - \sqrt{8}$
② $-1 > -\sqrt{5}$
② $1 - \sqrt{\frac{1}{2}} < -\sqrt{\frac{2}{3}} + 1$

$$\bigcirc$$
 1 - $\sqrt{\frac{1}{2}}$ < - $\sqrt{\frac{2}{2}}$ + 1

$$\therefore 3 - \sqrt{3} > -\sqrt{3}$$

$$\therefore 1 - \sqrt{\frac{1}{2}} > -\sqrt{\frac{2}{3}} + 1$$

. 다음 두 수의 대소를 비교한 것 중 옳은 것은?

①
$$4 > \sqrt{3} + 2$$

③ $3 > \sqrt{13}$

②
$$\sqrt{11} - 3 > \sqrt{11} - \sqrt{8}$$

(5)
$$2 + \sqrt{2} > 2 + \sqrt{3}$$

$$\sqrt[4]{\frac{1}{2}} < \frac{1}{3}$$

①
$$4 - \sqrt{3} - 2 = 2 - \sqrt{3} > 0$$

 $\therefore 4 > \sqrt{3} + 2$

②
$$\sqrt{11} - 3 - (\sqrt{11} - \sqrt{8}) = -3 + \sqrt{8}$$

= $-\sqrt{9} + \sqrt{8} < 0$
 $\therefore \sqrt{11} - 3 < \sqrt{11} - \sqrt{8}$

③ 양변을 제곱하면
$$(좌변)=3^2=9,\,(우변)=\left(\sqrt{13}\right)^2=13$$

(좌변)=
$$\left(\sqrt{\frac{1}{2}}\right)^2 = \frac{1}{2}$$
, (우변)= $\left(\frac{1}{3}\right)^2 = \frac{1}{9}$

$$\therefore \sqrt{\frac{1}{2}} > \frac{1}{3}$$
 (5) $2 + \sqrt{2} - (2 + \sqrt{3}) = \sqrt{2} - \sqrt{3} < 0$

$$\therefore 2 + \sqrt{2} < 2 + \sqrt{3}$$

- 46. 다음 두 수의 대소 관계를 바르게 나타낸 것은?
 - ① $3 \sqrt{3} < 5 \sqrt{5}$ ② $\sqrt{0.3} < 0.3$ ③ $4\sqrt{3} 1 < 3\sqrt{5} 1$ ④ $5 < \sqrt{3} + 3$

① $-2 < -\sqrt{3} < -1$ 이므로 $1 < 3 - \sqrt{3} < 2$

 $-3 < -\sqrt{5} < -2$ 이므로 $2 < 5 - \sqrt{5} < 3$ $\therefore 3 - \sqrt{3} < 5 - \sqrt{5}$ 나머지의 부등호의 바른 방향은 모두 반대 방향으로 바뀐다.