② x

다항식 $2x^3 + x^2 + 3x 를 x^2 + 1$ 로 나는 나머지는?

3 1

$$4 x + 3$$

 \bigcirc x-1

⑤ 3x - 1

해설

직접 나누어보면

 $(2x+1) + \frac{x-1}{x^2+1}$ ¬ 고 x = 2x+1 나머지 x = 1 2. 다항식 $f(x) = 3x^3 + ax^2 + bx + 12$ 가 x - 2로 나누어 떨어지고 또, x - 3으로도 나누어 떨어지도록 상수 a + b의 값을 정하여라.

▷ 정답: -5

▶ 답:

$$f(x)$$
 가 $x-2$ 로 나누어 떨어지려면 $f(2) = 24 + 4a + 2b + 12 = 0$

또,
$$f(x)$$
 가 $x-3$ 으로 나누어 떨어지려면
$$f(3) = 81 + 9a + 3b + 12 = 0$$

 $\therefore 4a + 2b + 36 = 0 \quad \cdots \quad \bigcirc$

$$\therefore 9a + 3b + 93 = 0 \quad \cdots \quad \Box$$

①,
$$\bigcirc$$
을 연립하여 풀면 $a = -13$, $b = 8$

3. 임의의 두 복소수 a, b 에 대하여 연산 \oplus 를 $a \oplus b = ab - (a + b)$ 로 정의한다. $Z = \frac{5}{2-i}$ 일 때, $Z \oplus \overline{Z}$ 의 값은?

①
$$1$$
 ② $1+2i$ ③ $1-2i$ ④ -1 ③ $2-2i$

해설
$$Z\oplus\overline{Z}=Z\overline{Z}-(Z+\overline{Z}),\ Z=2+i,\ \overline{Z}=2-i\ \text{이므로 연산을}$$
 계산해보면, $5-4=1$ 답은 ①

4. 다음 <보기>에서 계산 중 잘못된 것을 모두 고르면? (단, $i = \sqrt{-1}$)

I.
$$\sqrt{-3}\sqrt{-3} = \sqrt{(-3)\cdot(-3)} = \sqrt{9} = 3$$

II. $\sqrt{5}\sqrt{-2} = \sqrt{5}\times(-2) = \sqrt{-10} = \sqrt{10}i$
III. $\frac{\sqrt{2}}{\sqrt{-6}} = \sqrt{\frac{2}{-6}} = \sqrt{-\frac{1}{3}} = \sqrt{\frac{1}{3}}i$

III.
$$\frac{\sqrt{2}}{\sqrt{-6}} = \sqrt{\frac{2}{-6}} = \sqrt{-\frac{1}{3}} = \sqrt{\frac{1}{3}}i$$
IV. $\frac{\sqrt{-10}}{\sqrt{2}} = \sqrt{\frac{-10}{2}} = \sqrt{-5} = \sqrt{5}i$

I.
$$\sqrt{-3}\sqrt{-3} = \sqrt{3}i\sqrt{3}i = \sqrt{9}i^2 = -3$$

∴ 옮지 않다.
II. $\sqrt{5}\sqrt{-2} = \sqrt{5}\sqrt{2}i = \sqrt{10}i$

해설

IV.
$$\frac{\sqrt{-10}}{\sqrt{2}} = \frac{\sqrt{10}i}{\sqrt{2}} = \sqrt{\frac{10}{2}}i = \sqrt{5}i$$
$$\therefore \frac{2}{\sqrt{25}} \Gamma^{\dagger}.$$

5. x에 대한 이차방정식 $x^2 - 2(m+a-1)x + m^2 + a^2 - 2b = 0$ 이 m의 값에 관계없이 중근을 갖는다. a+b의 값은?

①
$$\frac{1}{2}$$
 ② 1 ③ $\frac{3}{2}$ ④ 2 ⑤ $\frac{5}{3}$

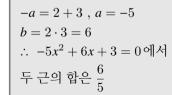
중근을 가지므로,
$$\frac{D'}{4} = 0$$
을 만족한다.
$$\frac{D'}{4} = (m+a-1)^2 - (m^2+a^2-2b) = 0$$
$$m(2a-2) + (1-2a+2b) = 0$$
m에 대한 항등식이므로

2a-2=0, 1-2a+2b=0

$$\therefore a = 1, b = \frac{1}{2}$$
$$\therefore a + b = \frac{3}{2}$$

3. 이차방정식
$$x^2 + ax + b = 0$$
의 두 근이 2, 3일 때, 이차방정식 $ax^2 + bx + 3 = 0$ 의 두 근의 합은?

①
$$\frac{1}{5}$$
 ② $\frac{2}{5}$ ③ $\frac{3}{5}$ ④ $\frac{4}{5}$ ⑤ $\frac{6}{5}$



7. x의 범위가 $1 \le x \le 2$ 일 때, 함수 $y = x^2 - x - 1$ 의 최댓값과 최솟값의 곱은?

해설
$$y = x^2 - x - 1 = \left(x - \frac{1}{2}\right)^2 - \frac{5}{4} \text{ 이므로}$$
 꼭짓점의 x 좌표 $\frac{1}{2}$ 이 x 의 범위에 포함되지 않는다. $x = 1$ 일 때, $y = -1$ (최솟값),

 x = 2 일 때, y = 1 (최댓값)

 따라서 최댓값과 최솟값의 곱은 -1 이다.

8. 방정식
$$x^6 - 1 = 0$$
의 해가 아닌 것은?

② 1 ③
$$\frac{-1+\sqrt{3}i}{2}$$

$$x^6-1$$

$$\begin{vmatrix} x^6 - 1 &= (x^3 + 1)(x^3 - 1) &= (x + 1)(x^2 - x + 1)(x - 1)(x^2 + x + 1) &= 0 \\ \Rightarrow x &= -1, 1, \frac{1 \pm \sqrt{3}i}{2}, \frac{-1 \pm \sqrt{3}i}{2} \end{vmatrix}$$

9. 사차방정식 $x^4 - 11x^2 + 30 = 0$ 의 네 근 중 가장 작은 근을 a, 가장 큰 근을 b라 할 때, $a^2 + b^2$ 의 값은?

$$x^{4} - 11x^{2} + 30 = 0$$

$$(x^{2} - 5)(x^{2} - 6) = 0$$

$$\therefore x = \pm \sqrt{5}, \ x = \pm \sqrt{6}$$
가장 작은 근 $a = -\sqrt{6}$, 가장 큰 근 $b = \sqrt{6}$

$$a^{2} + b^{2} = 6 + 6 = 12$$

10. 다음 연립방정식의 해를 구하여라.

$$\begin{cases} x + 2y = 8 \cdot \dots \cdot \bigcirc \\ 2y + 3z = 9 \cdot \dots \cdot \bigcirc \\ 3z + x = 5 \cdot \dots \cdot \bigcirc \end{cases}$$

▶ 답:

▶ 답:

▶ 답:

▷ 정답: x = 2

▷ 정답: y = 3

 \triangleright 정답: z=1

(a) - (c) 에서 y = 3

11. $P = (2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$ 의 값을 구하면?

$$2^{32} - 1$$

② $2^{32} + 1$

 $3 2^{31} - 1$

$$(4) 2^{31} + 1$$

 $=(2^{16}-1)(2^{16}+1)$

 $= 2^{32} - 1$

```
해설 주어진 식에 (2-1)=1을 곱해도 식은 성립하므로 P=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)
```

12. $(m^2 - 4)x - 1 = m(3x + 1)$ 를 만족하는 x가 없도록 하는 상수 m의 값은?

13. x-y=1을 만족하는 임의의 실수 x,y에 대하여 $ax^2+bxy+cy^2-1=0$ 이 항상 성립할 때, a+b+c의 값은?

$$\bigcirc 0 -2 \qquad \bigcirc 2 -1 \qquad \bigcirc \boxed{3} 0 \qquad \bigcirc 4 \qquad 1 \qquad \bigcirc 5 \qquad 2$$

$$y = x - 1$$
을 준식에 대입하여 x 에 대한 내림차순으로 정리하면 $(a + b + c)x^2 - (b + 2c)x + c - 1 = 0$ x 에 대한 항등식이므로 $a + b + c = 0$, $b + 2c = 0$, $c - 1 = 0$ $\therefore a = 1, b = -2, c = 1$

14. 다항식 $(x+3)^4 - 6(x+3)^2 + 8$ 을 인수분해 하면 (x+1)(x+5)g(x)일 때, g(-1)g(1)의 값으로 옳은 것은?

(5) 12

$$A = (x+3)^2$$
로 치환하면 주어진 식은
$$A^2 - 6A + 8 = (A-4)(A-2)$$

$$= (x^2 + 6x + 5)(x^2 + 6x + 7)$$

$$= (x+1)(x+5)(x^2 + 6x + 7)$$

$$= (x+1)(x+5)g(x)$$
따라서, $g(x) = x^2 + 6x + 7$

$$\therefore g(-1) \times g(1) = 2 \times 14 = 28$$

15. 삼각형의 세 변의 길이 a, b, c에 대하여 $a^2 + b^2 + c^2 = ab + bc + ca$ 가 성립할 때, 이 삼각형은 어떤 삼각형인가?

① 직각삼각형

② 이등변삼각형

③ 정삼각형

④ 직각이등변삼각형

해설

$$a^{2} + b^{2} + c^{2} - ab - bc - ca = 0$$

$$\frac{1}{2}(2a^{2} + 2b^{2} + 2c^{2} - 2ab - 2bc - 2ca) = 0$$

$$\frac{1}{2}(a^{2} - 2ab + b^{2} + b^{2} - 2bc + c^{2} + c^{2} - 2ca + a^{2}) = 0$$

$$\frac{1}{2}\{(a - b)^{2} + (b - c)^{2} + (c - a)^{2}\} = 0$$

a - b = 0, b - c = 0, c - a = 0 $\therefore a = b = c$

a, b, c는 실수이므로

 $a^2 + b^2 + c^2 = ab + bc + ca$

따라서, 주어진 삼각형은 정삼각형이다.

16. $(2^{48} - 1)$ 은 60 과 70 사이의 어떤 두 수로 나누어 떨어진다. 이 두수는?

3)63,65

해설
$$2^{48} - 1 = (2^6 - 1)(2^6 + 1)(2^{12} + 1)(2^{24} + 1)$$

= $63 \cdot 65 \cdot (2^{12} + 1)(2^{24} + 1)$ 따라서 $2^{48} - 1 \stackrel{\circ}{\sim} 63 \stackrel{\circ}{\rightarrow} 65 \stackrel{\circ}{\rightarrow} 1$ 나누어 떨어진다.

② 61, 65

(5) 67, 69

① 61, 63

(4) 63, 67

17. 등식 (x+yi)(z-i)=10을 만족하는 자연수 x,y,z의 순서쌍 (x,y,z)의 개수를 구하여라. $(단,i=\sqrt{-1})$

개

 $v(z^2 + 1) = 10$

$$(xz + y) + (yz - x)i = 10$$

$$xz + y = 10 \cdots \bigcirc, \ yz - x = 0 \cdots \bigcirc$$
()을 그에 대입

z를 기준으로 하여 순서쌍을 구해보면 (5, 5, 1), (4, 2, 2), (3, 1, 3) 3개

18. |x-2|+|x-3|=1을 만족하는 실수 x의 개수는?

① 0개

② 1개

③ 2개

④ 3개

⑤4개이상

 $\therefore 0 \cdot x = 0$ (모든 실수)

iii) $x \ge 3$ 일 때, (x-2) + (x-3) = 1

 $\therefore x = 3$

19.
$$x^2-2x+3=0$$
의 두 근을 α , β 라고 할 때, $(\alpha^2-2\alpha)(\beta^2-2\beta)$ 의 값을 구하여라.

답:

$$x^2 - 2x + 3 = 0$$
 에서 근과 계수의 관계에 의해 $\alpha + \beta = 2$, $\alpha\beta = 3$

$$\begin{vmatrix} (\alpha^2 - 2\alpha)(\beta^2 - 2\beta) \\ = \alpha^2 \beta^2 - 2\alpha^2 \beta - 2\alpha \beta^2 + 4\alpha \beta \\ = (\alpha \beta)^2 - 2\alpha \beta(\alpha + \beta) + 4\alpha \beta \end{vmatrix}$$

 $= 9 - 6 \cdot 2 + 12 = 9$

20. $x^2 - 4kx + (5 - k^2) = 0$ 이 두 실근 α , β 를 가질 때, $\alpha^2 + \beta^2$ 의 최솟값을 구하여라.

$$D/4 = 4k^{2} - (5 - k^{2}) \ge 0$$

$$4k^{2} - 5 + k^{2} \ge 0, 5k^{2} \ge 5, \therefore k^{2} \ge 1$$

$$\alpha + \beta = 4k, \quad \alpha\beta = 5 - k^{2}$$

$$\therefore \alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$

$$18k^2 \ge 18, \ 18k^2 - 10 \ge 18 - 10$$
 $\alpha^2 + \beta^2 \ge 8, \ \therefore \ (최솟값) = 8$

 $= 16k^2 - 10 + 2k^2$ $= 18k^2 - 10$

21. 이차방정식 $x^2 - (k-1)x + k = 0$ 의 두 근의 비가 2:3일 때, 실수 k 값의 곱을 구하여라.

두 근의 비가
$$2:3$$
이므로 두 근을 $2\alpha, 3\alpha$ 라 하면 $2\alpha + 3\alpha = 5\alpha = k - 1$ ······ ①

$$(2\alpha)(3\alpha) = 6\alpha^2 = k \quad \cdots \quad \Box$$

$$\bigcirc$$
 에서 $\alpha = \frac{k-1}{5}$,
이것을 \bigcirc 에 대입하면 $6k^2 - 37k + 6 = 0$

$$\therefore k = 6, \frac{1}{6}$$

22. 이차방정식 $x^2 - 3x + 1 = 0$ 의 두 근을 α , β 라 할 때, $\alpha + \frac{1}{\beta}$, $\beta + \frac{1}{\alpha}$ 을 두 근으로 하고 이차항의 계수가 1 인 이차방정식을 구하면?

$$2 x^2 - 3x + 4 = 0$$

$$3 x^2 + 6x + 5 = 0$$

두 근의 합 :
$$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right)$$

 $x^2 - 3x + 1 = 0$ 의 두 근이 α, β 이므로 $\alpha + \beta = 3$, $\alpha\beta = 1$

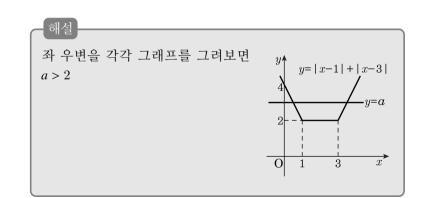
$$= \alpha + \beta + \frac{1}{\alpha} + \frac{1}{\beta} = 3 + \frac{\alpha + \beta}{\alpha \beta} = 3 + 3 = 6$$

두 근의 곱 :
$$\left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$$

$$= \alpha\beta + 1 + 1 + \frac{1}{\alpha\beta} = \alpha\beta + \frac{1}{\alpha\beta} + 2 = 4$$

23. x의 방정식 |x-1|+|x-3|=a가 서로 다른 두 개의 실근을 가질 때, 실수 a의 값의 범위는?

① a < 1 ② a > 1 ③ a < 2 ④ a > 2 ⑤ a < 3



24.
$$\frac{x+1}{2} = \frac{y-3}{5} = \frac{z+2}{3}, x \ge 0, y \ge 0, z \ge 0$$
 일 때 $x^2 - y^2 + z^2$ 의 최댓값을 구하여라.

$$\begin{cases} \frac{x+1}{2} = \frac{y-3}{5} = \frac{z+2}{3} = t \text{ 라 하면} \end{cases}$$

$$2$$
 5 3 $x = 2t - 1, y = 5t + 3, z = 3t - 2$ 이므로

$$x^{2} - y^{2} + z^{2} = (2t - 1)^{2} - (5t + 3)^{2} + (3t - 2)^{2} = -12t^{2} - 46t - 4$$

... \bigcirc

$$\bigcirc$$

$$0, y \ge 0,$$

$$x \ge 0, y \ge 0, z \ge 0$$
 이므로 $t \ge \frac{1}{2}, t \ge -\frac{3}{5}, t \ge \frac{2}{3}$

$$t \geq \frac{1}{2}, t$$

$$\therefore \ t \ge \frac{2}{3}$$

이 범위에서
$$\bigcirc$$
은 감소하므로 $t=\frac{2}{3}$ 일 때 최대이고 최댓값은

$$-12\left(\frac{2}{3}\right)^2 - 46 \cdot \frac{2}{3} - 4 = -40$$

25.
$$x^3+1=0$$
의 한 허근을 ω 라 할 때, $(\omega^2+1)^5+(\omega-1)^{100}$ 을 간단히 하면?

$$x^{3} + 1 = 0 \Leftrightarrow (x+1)(x^{2} - x + 1) = 0$$

$$\omega^{3} + 1 = 0, \ \omega^{3} = -1, \ \omega^{2} - \omega + 1 = 0$$

$$\omega^{2} + 1 = \omega, \ \omega^{6} = 1, \ \omega - 1 = \omega^{2}$$

$$(준 식) = \omega^{5} + (\omega^{2})^{100} = \omega^{5} + \omega^{200}$$

$$= \omega^{3} \cdot \omega^{2} + (\omega^{6})^{33} \cdot \omega^{2}$$

$$= -\omega^{2} + \omega^{2} = 0$$