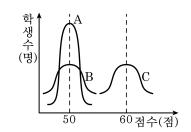
1. 다음 중 옳지 <u>않은</u> 것은?

- ① 평균과 중앙값은 다를 수도 있다. ② 중앙값은 반드시 한 개만 존재한다.
- ③ 최빈값은 반드시 한 개만 존재한다.
- ④ 자료의 개수가 홀수이면 $\frac{n+1}{2}$ 째 번 자료값이 중앙값이 된다. ⑤ 자료의 개수가 짝수이면 $\frac{n}{2}$ 번째와 $\frac{n+1}{2}$ 번째 자료값의 평균이 중앙값이 된다.

③ 최빈값은 반드시 한 개만 존재한다. → 최빈값은 여러 개 존재

할 수 있다.


2. 세 수 a,b,c의 평균이 6일 때, 5개의 변량 8,a,b,c,4의 평균은?

③6 ④ 8 ⑤ 10 ① 2 ② 4

a,b,c의 평균이 6이므로 $\frac{a+b+c}{3}=6$

 $\therefore a+b+c=18$ 따라서 5개의 변량 8,a,b,c,4의 평균은 $\frac{8+a+b+c+4}{5} = \frac{8+18+4}{5} = 6$

3. 다음은 A 반, B 반, C 반의 수학성적 분포에 관한 그래프이다. 다음 보기 중 옳은 것을 모두 골라라. (단, 점선 을 중심으로 각각의 그래프는 대칭 이다.

보기 \bigcirc C 반 학생의 성적이 평균적으로 A 반 학생의 성적보다

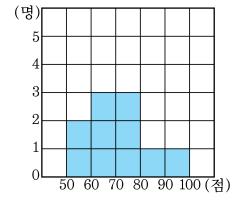
- 좋다. ① A 반 학생의 성적이 B 반 학생의 성적보다 더 고르다.
- © 고득점자는 A 반 학생보다 B 반 학생이 더 많다. ② B 반 학생의 성적과 C 반 학생의 성적의 평균은
- 비슷하다. ◎ 중위권 학생은 B 반 보다 A 반에 더 많다.

▶ 답:

▶ 답:

▶ 답: ▶ 답:

▷ 정답: つ


▷ 정답: □ ▷ 정답: □

▷ 정답: □

② B 반 학생의 성적과 C 반 학생의 성적의 평균은 비슷하다.

⇒ C 반 학생의 평균이 더 높다.

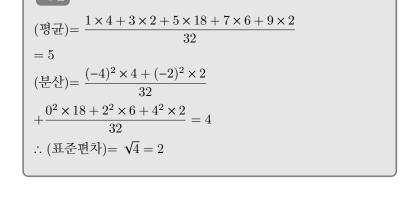
4. 다음 히스토그램은 학생 10 명의 과학 성적을 나타낸 것이다. 이 자료 의 분산은?

- ① 12 ② 72 ③ 80 ④ 120

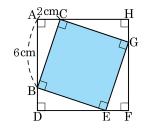
- **⑤**144

해설

평균: $\frac{55 \times 2 + 65 \times 3 + 75 \times 3 + 85 \times 1}{10} + \frac{95 \times 1}{10} = 71$


편차: -16, -6, 4, 14, 24

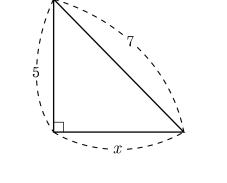
분산: $\frac{(-16)^2 \times 2 + (-6)^2 \times 3 + 4^2 \times 3}{14^2 \times 1 + 24^2 \times 1} + \frac{1440}{10} = 144$


5. 다음 도수 분포표는 어느 반 32명의 일주일 간 영어 공부 시간을 나타 낸 것이다. 평균, 표준편차를 차례대로 나열한 것은?

공부시간(시간)	학생 수(명)
0 ^{이상} ∼ 2 ^{미만}	4
2 ^{이상} ∼ 4 ^{미만}	2
4 ^{이상} ∼ 6 ^{미만}	18
6 ^{이상} ∼ 8 ^{미만}	6
8 ^{이상} ~ 10 ^{미만}	2
합계	32

① 5,1 ② 5,2 ③ 5,4 ④ 6,3 ⑤ 6,4

6. 다음 그림과 같이 $\triangle ABC$ 의 합동인 직각 삼각형으로 둘러싸인 □BEGC 의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$ ▶ 답: ▷ 정답: 40 cm²

해설

 \triangle ABC 에서 $\overline{BC}=\sqrt{2^2+6^2}=2\sqrt{10}~({
m cm})$ 따라서, \Box BEGC 는 한 변의 길이가 $2\sqrt{10}~{
m cm}$ 인 정사각형이므로 $\Box BEGC = (2\sqrt{10})^2 = 40 \text{ (cm}^2)$

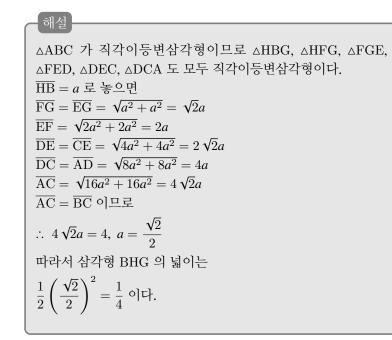
7. 다음을 만족하는 x 의 값을 구하여라.

① $2\sqrt{3}$ ② $2\sqrt{6}$ ③ $3\sqrt{8}$ ④ 4 ⑤ 6

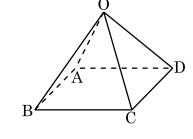
해설

빗변이 7 인 직각삼각형이므로 피타고라스 정리에 의해 $x^2+5^2=$ 7² 성립해야 하므로 $x^2 = 7^2 - 5^2$

$$= 49 -$$


=49-25= 24

 $\therefore x = \sqrt{24} = 2\sqrt{6} \ (\because x > 0)$


8. 다음 그림과 같이 $\overline{AC} = \overline{BC} = 4$ 인 직각이등 변삼각형 ABC 의 점 C 에서 변 AB 에 내린 수선의 발을 D, 점 D 에서 변 BC 에 내린 수 선의 발을 E, 점 E 에서 변 AB 에 내린 수선의 발을 F, 점 F 에서 변 BC 에 내린 수선의 발을 G, 점 G 에서 변 AB 에 내린 수선의 발을 H 라 할 때, 삼각형 BHG 의 넓이를 구하여라.

ightharpoonup 정답: $rac{1}{4}$

▶ 답:

9. 다음과 같이 밑면이 직사각형인 사각뿔 O – ABCD 에서 \overline{OA} = $4, \overline{OB} = 6, \overline{OC} = 8$ 일 때, 선분 OD 의 길이를 구하여라.

답: ightharpoonup 정답: $2\sqrt{11}$

점 O 에서 밑면에 그은 수선의 발과 점 A, B, C, D 사이의

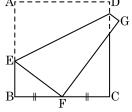
해설

거리를 a, b, c, d 라 하면 $a^2 + c^2 = b^2 + d^2$ 이때, 사각뿔의 높이를 l, $\overline{\mathrm{OD}} = x$ 라 하면

 $a^2 + l^2 = 4^2 \ (\textcircled{1})$

 $b^2 + l^2 = 6^2$ (2)

 $c^2 + l^2 = 8^2$ (③)


 $d^2 + l^2 = x^2 \ (\textcircled{4})$ ①+③를 하면 $a^2 + c^2 + 2l^2 = 4^2 + 8^2$

②+④를 하면 $b^2 + d^2 + 2l^2 = 6^2 + x^2$

그런데, $a^2 + c^2 = b^2 + d^2$ 이므로 $4^2 + 8^2 = 6^2 + x^2$

 $\therefore x = \sqrt{44} = 2\sqrt{11}$

10. 한 변의 길이가 10인 정사각형 ABCD 를 다음 그림과 같이 접을 때, ∆EBF 의 넓이를 구하여라. (단, 점 F 는 \overline{BC} 의 중점이다.)

답:

ightharpoons 정답: $rac{75}{8}$

해설

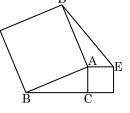
 $\overline{\mathrm{EB}} = x$ 라 하면 $\overline{\mathrm{AE}} = \overline{\mathrm{EF}}$ 이므로 $\overline{\mathrm{EF}} = 10 - x$ 이다.

∆EBF 에서

 $(10-x)^2 = x^2 + 5^2$ $100 - 20x + x^2 = x^2 + 25$

20x = 75

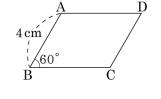
 $\therefore x = \frac{15}{4}$ $\therefore \Delta EBF = \frac{1}{2} \times 5 \times \frac{15}{4} = \frac{75}{8}$


11. 한 정삼각형의 넓이가 $30\sqrt{3}$ 라고 한다면 높이는?

① $2\sqrt{10}$ ② $3\sqrt{10}$ ③ $4\sqrt{10}$ ④ $5\sqrt{10}$ ⑤ $6\sqrt{10}$

 $(정삼각형의 넓이) = \frac{\sqrt{3}}{4}a^2 = 30\sqrt{3}$

 $a^2 = 120$ $a = 2\sqrt{30}$ 이므로 정삼각형의 높이는 $\frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{2} \times 2\sqrt{30} = 3\sqrt{10}$ 이다.


12. 다음 그림과 같이 변의 길이가 각각 5, 12, 13 인 직각삼각형 ABC의 두 변 AB, AC를 각각 한 변으로 하는 2개의 정 사각형을 그렸을 때, \overline{DE}^2 을 구하여라.

 ► 답:

 ▷ 정답:
 244

점 D에서 \overline{AE} 의 연장선 위에 내린 수선 의 발을 F라 하면 $\triangle ABC$ 와 $\triangle ADF$ 에서 $\angle ACB = \angle DFA = 90$ °, $\overline{AD} = \overline{AB} =$ 13, $\angle DAF = 90$ ° - $\angle FAB = \angle BAC$ $\therefore \triangle ABC \equiv \triangle ADF$ (RHA 합동) $\therefore \overline{AF} = 5$, $\overline{DF} = 12$ 따라서 $\triangle DEF$ 에서 피타고라스 정리에 의해서 $\overline{DE}^2 = (5+5)^2 +$ $12^2 = 244$ 이다. 13. 다음 사각형 ABCD 는 마름모이다. 한 변의 길이가 4 cm 이고, ∠ABC = 60°일 때, 넓이를 구하여라.

 > 정답:
 8√3 cm²

점 A 에서 수선을 그어 $\overline{\mathrm{BC}}$ 와 만나는 점을 H 라고 두면 $\overline{\mathrm{AB}}$:

해설

▶ 답:

 $\overline{AH} = 2: \sqrt{3} = 4: x, \ x = 2\sqrt{3}$ 이다. 따라서 넓이는 $4 \times 2\sqrt{3} = 8\sqrt{3} \ (\mathrm{cm}^2)$ 이다.

 $\underline{\mathrm{cm}^2}$

14. 좌표평면 위의 두 점 A, B 의 좌표는 다음과 같다. 두 점 사이의 거리가 $\sqrt{5}$ 일 때 알맞은 a 의 값을 모두 고르면?

A(3, 2a + 2), B(a + 1, 2)

① 1 ② -2 ③ $\frac{1}{3}$ ④ $\frac{1}{5}$

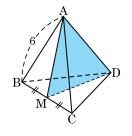
해설

지B =
$$\sqrt{(3-a-1)^2 + (2a+2-2)^2}$$

= $\sqrt{(2-a)^2 + (2a)^2} = \sqrt{5}$
양변을 제곱하면 $(2-a)^2 + 4a^2 = 5$
 $4-4a+a^2+4a^2=5$
 $5a^2-4a-1=0$
 $(a-1)(5a+1)=0$

따라서 a=1 또는 $a=-\frac{1}{5}$ 이다.

- **15.** 다음 중 좌표평면 위의 점 P(1, 1) 을 중심으로 하고 반지름의 길이가 3 인 원의 내부에 있는 점의 좌표를 구하여라.
 - \oplus D(-2, -2) \bigcirc \bigcirc E(3, 1 + $\sqrt{2}$)
- - ① A(2, 6) ② B(1, 4) ③ C(5, 1)

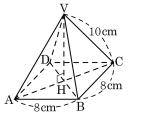

해설

 $\overline{\rm PA}=\sqrt{1^2+5^2}=\sqrt{26}>3$, 점 A 는 원 외부에 있다.

 $\overline{PB} = \sqrt{0^2 + 3^2} = \sqrt{9} = 3$, 점 B 는 원 위에 있다. $\overline{PC} = \sqrt{4^2 + 0} = \sqrt{16} > 3$, 점 C 는 원 외부에 있다. $\overline{PD} = \sqrt{3^2 + 3^2} = \sqrt{18} > 3$, 점 D 는 원 외부에 있다.

 $\overline{\rm PE} = \sqrt{2^2 + (\sqrt{2})^2} = \sqrt{6} < 3$ 따라서, 점 E 는 원의 내부에 있다.

16. 다음 그림과 같이 한 모서리의 길이가 6 인 정 사면체 A – BCD 에서 점 M 이 \overline{BC} 의 중점일 때, △AMD 의 넓이는?


① 9 ② 10 ③ $9\sqrt{6}$ ④ $9\sqrt{3}$

 $\bigcirc 9\sqrt{2}$

해설

 ΔAMD 는 $AM = DM = \sqrt{0} = 3$ = $3\sqrt{3}$ 인 이등변삼각형이고 ΔAMD 의 높이는 $\sqrt{(3\sqrt{3})^2 - 3^2} = \sqrt{18} = 3\sqrt{2}$ 이다. $\triangle AMD = \frac{1}{2} \times 6 \times 3\sqrt{2} = 9\sqrt{2}$

17. 다음 그림과 같이 밑면은 한 변의 길이가 8 cm 인 정사각형이고, 옆면의 모서리의 길이는 모두 $10\,\mathrm{cm}$ 인 정사각뿔에서 $\Delta\mathrm{VHC}$ 의 넓이는?

- ① $3\sqrt{34} \, \text{cm}^2$ ② $4\sqrt{17} \, \text{cm}^2$ $4 \ 20 \, \text{cm}^2$ $5 \ 24 \, \text{cm}^2$
- $\boxed{3}4\sqrt{34}\,\mathrm{cm}^2$

 $\square ABCD$ 가 정사각형이므로 $\overline{AC}=\sqrt{8^2+8^2}=8\sqrt{2}(\,\mathrm{cm})$ $\overline{\mathrm{HC}} = \frac{1}{2}\overline{\mathrm{AC}} = 4\sqrt{2}(\mathrm{\,cm})$

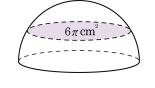
 $\therefore \overline{VH} = \sqrt{10^2 - (4\sqrt{2})^2} = \sqrt{68} = 2\sqrt{17} (\text{cm})$

$$\triangle \text{VHC}$$
 의 넓이는 $S = \frac{1}{2} \times 4\sqrt{2} \times 2\sqrt{17} = 4\sqrt{34} \text{(cm}^2)$ 이다.

18. 다음 그림과 같이 반지름의 길이가 12 이고 중심각의 크기가 150° 인 부채꼴을 옆면으 로 하는 원뿔을 만들 때, 이 원뿔의 높이를 구하여라.

12 ---150°

▶ 답:


밑면의 반지름의 길이를 r이라 하면

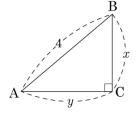
해설

(부채꼴의 호의 길이) = (밑면의 둘레의 길이) 이므로 $2\pi \times 12 \times \frac{150}{360}$ ° = $2\pi \times r$ $\therefore r = 5$

(원뿔의 높이) = $\sqrt{12^2 - 5^2} = \sqrt{119}$

19. 다음 반구에서 반지름의 $\frac{1}{2}$ 지점을 지나고 밑면에 평행하게 자른 단면의 넓이가 $6\pi {
m cm}^2$ 일 때, 반구의 겉넓이를 구하면?

- ① $6\pi \,\mathrm{cm}^2$ 4 $24\pi \,\mathrm{cm}^2$
- $2 12\pi \,\mathrm{cm}^2$ $\Im 30\pi\,\mathrm{cm}^2$
- $3 18\pi \,\mathrm{cm}^2$


밑면에 평행하게 자른 단면의 넓이가 $6\pi\,\mathrm{cm}^2$ 이므로 단면의 반지름의 길이를 $a\,\mathrm{cm}$ 라고 하면 $\pi a^2 = 6\pi$, $a^2 = 6$ \therefore $a = \sqrt{6}$

반구의 반지름의 길이를 r cm 라고 하면 $r^2 = \left(\frac{1}{2}r\right)^2 + a^2$,

 $\frac{3}{4}r^2 = 6$, $r^2 = 8$ 반구의 겉넓이 = 구의 겉넓이 $\times \frac{1}{2}$ + 밑면의 넓이

구의 겉넓이 × $\frac{1}{2}=4\pi r^2$ × $\frac{1}{2}=4\pi$ × 8 × $\frac{1}{2}=16\pi (\,\mathrm{cm}^2)$ 밑면의 넓이 = $\pi r^2 = \pi \times 8 = 8\pi (\text{cm}^2)$ 따라서 반구의 겉넓이는 $16\pi + 8\pi = 24\pi (\text{cm}^2)$ 이다.

20. $\sin A = \frac{\sqrt{2}}{2} \text{ 인 직각삼각형 ABC 에서 } x+y$ 의 값은? (단, 0° < A < 90°)

① $\sqrt{2} + 2$ ② $2\sqrt{2} - 2$ ③ $4\sqrt{2}$ ④ $4\sqrt{2} - 2$ ⑤ $5\sqrt{2} - 2$

sin A =
$$\frac{x}{4} = \frac{\sqrt{2}}{2}$$
 $\Rightarrow x = 2\sqrt{2}$
 $y = \sqrt{4^2 - (2\sqrt{2})^2} = 2\sqrt{2}$
따라서 $x = 2\sqrt{2}$, $y = 2\sqrt{2}$ 이다.

따라서
$$x = 2\sqrt{2}$$
, $y = 2\sqrt{2}$

21. 다음 그림과 같이 한 변의 길이가 4 인 정사면체 A – BCD 에서 $\overline{\text{CD}}$ 의 중점을 E 라 하고, $\angle AEB$ 를 x 라고 할 때, $\sin x \times \cos x$ 의 값이 $\frac{b\sqrt{2}}{a}$ 이 다. a+b 의 값을 구하시오. (단, a, b는 서로소)

답:▷ 정답: 11

 $\overline{\text{CE}} = 2$ 이고 점 A 에서 $\overline{\text{BE}}$ 에 내린 수선의 발을 H라 하면 점 H

는 $\triangle BCD$ 의 무게중심이므로 $\overline{EH}=\frac{1}{3}\overline{EB}, \overline{EB}=2\sqrt{3}$ $\overline{EH}=\frac{1}{3}\times2\sqrt{3}=\frac{2\sqrt{3}}{3}$, $\overline{AE}=2\sqrt{3}$

$$\overline{AH} = \frac{4\sqrt{6}}{3}$$

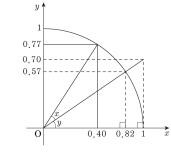
$$\sin x \times \cos x = \frac{4\sqrt{6}}{\frac{3}{2\sqrt{3}}} \times \frac{2\sqrt{3}}{\frac{3}{2\sqrt{3}}} = \frac{24\sqrt{2}}{\frac{9}{12}} = \frac{2\sqrt{2}}{9} \text{ or}.$$

 $\therefore a + b = 9 + 2 = 11$

22. 다음 중 옳지 <u>않은</u> 것은?

- ① $\tan 45^{\circ} = \frac{1}{\tan 45^{\circ}}$ ② $\sin^2 30^{\circ} + \cos^2 60^{\circ} = \frac{1}{2}$
- $30^{\circ} + \cos 60^{\circ} = \cos 90^{\circ}$
- $\textcircled{4} \sin 45^{\circ} = \cos 45^{\circ} \times \tan 45^{\circ}$
- $(3) \sin^2 30^\circ + \cos^2 30^\circ = 1$

해설


③ (좌변) =
$$\frac{\sqrt{3}}{2} + \frac{1}{2}$$
, (우변) = 0

- 23. 다음 그림과 같이 PT 는 지름의 길이가 20cm 인원 O의 접선이다. ∠BPT = 60° 일 때, ĀB 의 길이 는? 20 cm O $\bigcirc 3 \, \mathrm{cm}$ \bigcirc 5 cm $4 \ 8 \, \mathrm{cm}$
 - $36 \, \mathrm{cm}$
 - ⑤ 10 cm

반원에 대한 원주각의 크기는 90° 이므로 $\angle ABP = 90^\circ$ 직선 PT 가 원 O 의 접선이므로 $\angle BAP = \angle BPT = 60^\circ$ 20 cm $\triangle ABP$ 에서 $\cos 60^\circ = \frac{\overline{AB}}{20} = \frac{1}{2}$ 이므로 $\therefore \overline{AB} = 10 (\,\mathrm{cm})$

24. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 다음 중 <u>틀린</u> 것은?

- ① $\sin(x+y) = 0.77$ ③ $\cos y = 0.82$
- $\sin y = 0.82$ $4 \cos(x+y) = 0.40$

 $\bigcirc \sin y = 0.57$

25. 다음 그림에서 13a + 13c 를 구 하여라.

각도	sin	cos
74°	0.96	0.28
75°	0.96	0.26
76°	0.97	0.24

ightharpoonup 정답: 13a + 13c = 490

답:

 $\angle C = 75^{\circ}$ 이므로 $\cos 75^{\circ} = \frac{5}{a} = 0.26$, $\sin 75^{\circ} = \frac{c}{a} = 0.96$ 이므로 $a = \frac{500}{26} = \frac{250}{13}, c = \frac{250}{13} \times \frac{96}{100} = \frac{240}{13}$ 이 성립한다.

따라서 13a + 13c = 250 + 240 = 490 이다.