- **1.** 16 의 제곱근 중 작은 수와 121 의 제곱근 중 큰 수의 합을 구하면?
 - ① -7 ② 4

- ③ 7 ④ 15 ⑤ 20

해설 16 의 제곱근은 ±4 이고 121 의 제곱근은 ±11 이다. 16 의 제곱근

중 작은 수는 -4 이고 121 의 제곱근 중 큰 수는 11 이다. 11 - 4 는 7 이다.

2. $\sqrt{\sqrt{81}} - \sqrt{0.09} + \sqrt{(0.9)^2} - \sqrt{\frac{1}{16}}$ 을 계산하면?

① 3.05 ② 3.15 ③ 3.25 ④ 3.35 ⑤ 3.45

해설 (준식) = 3 - 0.3 + 0.9 - $\frac{1}{4}$ = 3.35

3. 다음 중 두 실수의 대소 관계가 옳지 <u>않은</u> 것은?

① $\sqrt{5} - 1 > 1$

② $5 - \sqrt{5} > 5 - \sqrt{6}$

 $\boxed{3} - \sqrt{6} > -\sqrt{5}$

③ $\sqrt{2} - 1 < \sqrt{3} - 1$ ④ $\sqrt{18} + 2 > \sqrt{15} + 2$

해설

⑤ $-\sqrt{6} - (-\sqrt{5}) = -\sqrt{6} + \sqrt{5} < 0$ ∴ $-\sqrt{6} < -\sqrt{5}$

- 4. 다음 중 $\sqrt{3}$ 와 $\sqrt{11}$ 사이에 있는 무리수는?

- ① $\sqrt{3} 1$ ② $2\sqrt{3}$ ③ $\sqrt{11} 3$ ④ $\sqrt{3} + 3$

해설 $2\sqrt{3} = \sqrt{12}, \ \sqrt{3} < \frac{\sqrt{3} + \sqrt{11}}{2} < \sqrt{11}$

- 다음 중 $\sqrt{45+x}$ 가 자연수가 되게 하는 x 의 값으로 옳지 <u>않은</u> 것을 **5.** 모두 고르면?
 - ① 3 19
- **4**)26
- **⑤** 36

- ① $\sqrt{45+3} = \sqrt{48} = \sqrt{2^4 \times 3}$ 이 되어 자연수가 되지 못한다. ④ $\sqrt{45+26} = \sqrt{71}$ 이 되어 자연수가 되지 못한다.

- 다음 중 두 수의 대소 관계가 옳은 것은? **6.**
 - ① $-\sqrt{3} < -2$ $3 - \sqrt{12} < -4$
- $\bigcirc -\sqrt{\frac{1}{3}}<-\frac{1}{2}$
- ④ $3 < \sqrt{8}$

해설

- $\begin{array}{l}
 \hline{ (1) \sqrt{3} > -2(= -\sqrt{4})} \\
 \hline{ (2) \sqrt{(-3)^2}(= 3) > \sqrt{(-2)^2}(= 2)} \\
 \hline{ (3) \sqrt{12} > -4(= -\sqrt{16})} \\
 \hline{ (4) } 3(= \sqrt{9}) > \sqrt{8}
 \end{array}$

7.
$$\sqrt{(2-\sqrt{2})^2} - \sqrt{(1-\sqrt{2})^2}$$
 을 간단히 하면?

① 1 ② -1 ③ $3-2\sqrt{2}$

 $4 -3 + 2\sqrt{2}$ $5 1 - 2\sqrt{3}$

 $1 < \sqrt{2} < 2$ 이旦로 $2 - \sqrt{2} > 0$, $1 - \sqrt{2} < 0$ $\left| 2 - \sqrt{2} \right| - \left| 1 - \sqrt{2} \right| = 2 - \sqrt{2} + 1 - \sqrt{2}$ $= 3 - 2\sqrt{2}$

- 8. 다음 부등식을 만족하는 자연수 x 는 몇 개인가? $-4 < -\sqrt{x} \le -1$

 - ① 12개 ② 13개 ③ 14개 ④ 15개 ⑤ 16개

 $1 \le \sqrt{x} < 4$

해설

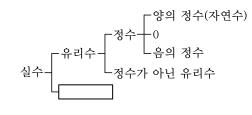
 $1^2 \le \left(\sqrt{x}\right)^2 < 4^2$ 이므로 $1 \le x < 16$

x는 1 부터 15 까지의 자연수로 15개이다.

- 다음 중 유리수가 아닌 수는? 9.
- ① $\sqrt{4} + 1$ ② $\sqrt{0.49}$ ③ $\sqrt{(-3)^2}$

- ① $\sqrt{4}+1=2+1=3(유리수)$ ② $\sqrt{0.49}=0.7(유리수)$ ③ $\sqrt{(-3)^2}=3(유리수)$

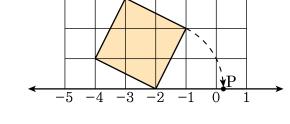
- ⑤ $-\frac{1}{2}$ (유리수)


- 10. 다음 중 무리수에 대한 설명이 아닌 것을 <u>모두</u> 고르면? (정답 <math>2개)
 - ③ 유한소수
 ④ 순환소수
 - ① 순환하지 않는 무한소수 ② 분수로 나타낼 수 없는 수

해설

- ⑤ 유리수가 아닌 수

③ ④ 유한소수, 순환소수는 유리수이다.


11. 다음 중 만의 수에 해당하지 <u>않는</u> 것은?

- ① $\sqrt{5} + 1$ ② $-\frac{\pi}{2}$ ③ $\sqrt{0.9}$ ④ $0.1234\cdots$

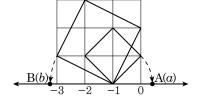
빈칸에 들어갈 용어는 무리수이다. 무리수가 아닌 것을 찾는다. $(4) - \sqrt{2.89} = -\sqrt{\frac{289}{100}} = -\sqrt{\left(\frac{17}{10}\right)^2} = -\frac{17}{10}$

12. 다음 수직선 위에서 점 P 에 대응하는 수는?

- $\bigcirc -2 + \sqrt{5}$ $\bigcirc -2 \sqrt{5}$
- ① $-2 + \sqrt{2}$ ② $-2 \sqrt{2}$ ③ $\sqrt{5}$

해설

정사각형의 한 변의 길이는 $\sqrt{5}$, 따라서 점 P에 대응하는 수는


 $-2+\sqrt{5}$ 이다.

13. a < 0 일 때, 다음 중 옳은 것은?

- $\sqrt{(-a)^2} = -a$

- a < 0 인 경우, $\sqrt{a^2} = -a$ 이다. ① $-\sqrt{(-a)^2} = -\sqrt{a^2} = -(-a) = a$ ② 음수의 제곱근은 존재하지 않는다.
- $\Im a$
- ⑤ −*a*

14. 다음 그림을 보고 옳지 <u>않은</u> 것을 고르면?(단, 모눈 한 칸은 한 변의 길이가 1 인 정사각형이다.)

- a 와 b 사이에는 유리수가 무수히 많다.
 a 와 b 사이에는 무리수가 무수히 많다.
- ③ A의 좌표는 A(-1 + √2) 이다.
- ④ B의 좌표는 B(-1 √5) 이다.

$$a$$
 와 b 의 중점의 좌표는 $\frac{(-1-\sqrt{5})+(-1+\sqrt{2})}{2}=\frac{-2-\sqrt{5}+\sqrt{2}}{2}$ 이다.

15. 다음 중 근호를 사용하지 않고 나타낼 수 $\underline{\text{없는}}$ 것을 모두 골라라.

 \bigcirc $\sqrt{0.16}$ \bigcirc $\sqrt{0.4}$ \bigcirc $\sqrt{101}$ (a) $\sqrt{9}$ (b) $-\sqrt{\frac{4}{9}}$

▶ 답:

▶ 답:

▷ 정답: 心

▷ 정답: □

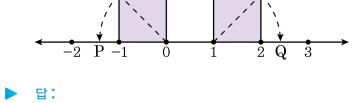
\bigcirc $\sqrt{0.16}$ 은 0.16의 양의 제곱근이므로 0.4이다.

 \bigcirc $\sqrt{0.4}$ 는 0.4 의 양의 제곱근이다. 근호를 사용하지 않고 나타 낼 수 없다.

 \bigcirc $\sqrt{101}$ 은 101 의 양의 제곱근이다. 근호를 사용하지 않고 나타낼 수 없다.

16. x > 1 일 때, $\sqrt{(x-1)^2} - \sqrt{(1-x)^2}$ 의 값을 구하여라.

▶ 답:


▷ 정답: 0

해설

x > 1 이므로 x - 1 > 0 , 1 - x < 0 (준식) $= (x - 1) - \{-(1 - x)\}$

$$= (x-1) - (x-1) = 0$$

17. 다음 그림에서 수직선 위의 사각형은 정사각형이다. 이 때, 점 $\mathrm{P}(a),\ \mathrm{Q}(b)$ 에서 a+b 의 값을 구하여라.

> 정답: a+b=1

 $P(-\sqrt{2})$, $Q(1+\sqrt{2})$ 이므로

해설

 $a + b = -\sqrt{2} + 1 + \sqrt{2} = 1$

18. $\sqrt{18a}$ 가 정수가 되기 위한 가장 작은 자연수 a 의 값을 구하여라.

답:

▷ 정답: 2

해설 근호 안의 수가 제곱수가 되어야 한다. $\sqrt{18a} = \sqrt{3^2 \times 2 \times a}$

이므로 a=2 이다.

19. 다음 세 수를 큰 순서대로 나열할 때, 가운데에 위치하는 수를 구하 시오.

 $\sqrt{15}$, $3 + \sqrt{2}$, 4

답:

▷ 정답: 4

해설

 $(3 + \sqrt{2}) - 4 = \sqrt{2} - 1 > 0 : 3 + \sqrt{2} > 4$: $\sqrt{15} < 4 < 3 + \sqrt{2}$

 $\sqrt{15}-4=\sqrt{15}-\sqrt{16}<0\ \therefore\ \sqrt{15}<4$

20. $\sqrt{25}$ 의 양의 제곱근을 a , $\sqrt{81}$ 의 음의 제곱근을 b , $\sqrt{(-169)^2}$ 의 음의 제곱근을 c라 할 때, $bc-\sqrt{5}a$ 의 제곱근을 구하여라.

> 정답: ± √34

▶ 답:

V CL. 1 10

 $\sqrt{25} = \sqrt{5^2} = 5$ 의 제곱근은 $\pm \sqrt{5}$ $\therefore a = \sqrt{5}$

해설

 $\sqrt{81} = \sqrt{9^2} = 9$ 의 제곱근은 ± 3 $\therefore b = -3$ $\sqrt{(-169)^2} = 169$ 의 제곱근은 ± 13 $\therefore c = -13$ $bc - \sqrt{5}a = (-3) \times (-13) - \sqrt{5} \times \sqrt{5} = 34$ 이므로 34의 제곱근은 $\pm \sqrt{34}$ 이다.