다음은 이차방정식의 해를 구한 것이다. 옳지 <u>않은</u> 것은? 1.

①
$$2x^2 - 4x + 1 = 0$$
, $x = \frac{2 \pm \sqrt{2}}{2}$
② $2x^2 - 6x - 5 = 0$, $x = \frac{3 \pm \sqrt{19}}{2}$

③
$$x^2 - 2x - 2 = 0$$
, $x = 1 \pm \sqrt{3}$

$$(4) x^2 + 2x - 11 = 0, \ x = \frac{12 - \sqrt{15}}{2}$$

2. 이차방정식 $9x^2 - 6x - 1 = 0$ 을 풀면?

①
$$x = \frac{1}{3} \begin{pmatrix} \frac{2}{5} \frac{1}{1} \end{pmatrix}$$
 ② $x = -\frac{1}{3} \begin{pmatrix} \frac{2}{5} \frac{1}{1} \end{pmatrix}$ ③ $x = \frac{6 \pm \sqrt{2}}{18}$ ④ $x = \frac{2 \pm \sqrt{2}}{6}$ ⑤ $x = \frac{1 \pm \sqrt{2}}{3}$

해설
$$ax^2 + 2b'x + c = 0 (a \neq 0) 에서$$
$$x = \frac{-b' \pm \sqrt{b'^2 - ac}}{a}$$
이다.
$$\therefore x = \frac{1 \pm \sqrt{2}}{3}$$

다음은 이차방정식 $ax^2+bx+c=0$ $(a\neq 0)$ 을 푸는 과정이다. ① ~ 3. ⑤에 들어갈 식이 바르지 못한 것은?

$$ax^{2} + bx + c = 0$$

$$x^{2} + \frac{b}{a}x = -\frac{c}{a}$$

$$x^{2} + \frac{b}{a}x + \boxed{1} = -\frac{c}{a} + \boxed{1}$$

$$(x + \boxed{2})^{2} = \boxed{3}$$

$$x = \boxed{4} \pm \boxed{5}$$

①
$$\frac{b^2}{4a^2}$$
 ② $\frac{b}{2a}$ ② $\frac{b}{\sqrt{b^2 - 4ac}}$ ③ $\frac{\sqrt{b^2 - 4ac}}{2a}$

$$\frac{}{2a}$$

 $ax^2 + bx + c = 0$ \leftarrow 양변을 a 로 나눈다. $x^2 + \frac{b}{a}x = -\frac{c}{a} \leftarrow$ 양변에 $\left(\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2}$ 흘 더한다. $x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} = -\frac{c}{a} + \frac{b^{2}}{4a^{2}}$ $\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \leftrightarrow x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$

$$\left(x + \frac{1}{2a}\right) = \frac{1}{4a^2} \leftrightarrow x + \frac{1}{2}$$
$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$\therefore ③ 이 잘못되었다.$$

다음은 이차방정식 $ax^2 + 2bx + c = 0 \ (a \neq 0)$ 을 푸는 과정이다. ① **4.** ~ ⑤에 들어갈 식이 바르지 못한 것은? (단, $b^2-ac \ge 0$)

$$ax^{2} + 2bx + c = 0 (a \neq 0)$$

$$x^{2} + \frac{2b}{a}x = -\frac{c}{a}$$

$$x^{2} + \frac{2b}{a}x + \boxed{1} = -\frac{c}{a} + \boxed{1}$$

$$(x + \boxed{2})^{2} = \boxed{3}$$

$$x = \textcircled{4} \pm \boxed{5}$$

① $\frac{b^2}{a^2}$ ② $\frac{b}{a}$ ② $\frac{b}{a}$ ④ $\frac{\sqrt{b^2 - ac}}{a^2}$

 $ax^2 + 2bx + c = 0 (a \neq 0)$ 양변을 a 로 나누고 상수항을 이항하면 $x^2 + \frac{2b}{a}x = -\frac{c}{a},$

a a a a b 양변에 $\frac{b^2}{a^2}$ 을 더하면 $x^2 + \frac{2b}{a}x + \frac{b^2}{a^2} = -\frac{c}{a} + \frac{b^2}{a^2}$ $\left(x + \frac{b}{a}\right)^2 = \frac{b^2 - ac}{a^2}$

 $x + \frac{b}{a} = \pm \frac{\sqrt{b^2 - ac}}{a}$

 $x = -\frac{b}{a} \pm \frac{\sqrt{b^2 - ac}}{a}$ ∴ ③가 잘못 되었다.

이차방정식 $2x^2 - 5x + 2 = 0$ 의 두 근의 합이 $x^2 - kx - 20 = 0$ 의 근일 **5.** 때 k 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $-\frac{11}{2}$

 $2x^2 - 5x + 2 = 0$ 의 두 근은 $x = \frac{1}{2}$, 2이므로 함은 $\frac{5}{2}$ 이고 이것이 $x^2 - kx - 20 = 0$ 의 근이므로 $\frac{25}{4} - \frac{5}{2}k - 20 = 0$, $\frac{5}{2}k = -\frac{55}{4}$ $\therefore k = -\frac{11}{2}$

6. 이차방정식 $2x^2-8x+3=0$ 을 풀면 $x=\frac{A\pm\sqrt{B}}{2}$ 이다. $Ax^2-Bx+4=$ 0 의 해는? ① 2, $\frac{1}{2}$ ② -3, $\frac{1}{3}$ ③ -2,3 ④ 2,3

 $2x^2 - 8x + 3 = 0$ 을 풀면 $x = \frac{4 \pm \sqrt{10}}{2}$ 이다.

A=4, $B=10 \stackrel{\diamond}{=}$

A = 4, B = 10 들 $Ax^2 - Bx + 4 = 0$ 에 대입하면 $4x^2 - 10x + 4 = 0$ $2x^2 - 5x + 2 = 0$ (x - 2)(2x - 1) = 0

 $\therefore x = 2 \,\, \text{\Psi} \pm x = \frac{1}{2}$

7. 이차방정식 $2x^2 - 6x + 3 = 0$ 의 근이 $x = \frac{A \pm \sqrt{B}}{2}$ 일 때, A + B 의 값을 구하여라. (단, A, B 는 유리수)

▷ 정답: 6

V 0H.

해설
$$x = \frac{6 \pm \sqrt{36 - 24}}{4} = \frac{3 \pm \sqrt{3}}{2}$$

$$\therefore A = 3, B = 3$$

$$\therefore A + B = 6$$

- 두 수 $a,\ b(a < b)$ 에 대하여 $(a b)^2 + 2(a b) 15 = 0$ 의 관계가 8. 성립한다고 한다. a+b=7일 때, ab의 값은?
 - ① 5

3 7 4 8 5 9

해설

a - b = t로 치환하면 $t^2 + 2t - 15 = 0$

(t+5)(t-3) = 0

 $\therefore t = -5 \stackrel{\mathbf{L}}{\mathbf{L}} t = 3$

a < b이卫로 t = a - b = -5

a+b=7이므로 두 식을 연립하면 $a=1,\ b=6$ $\therefore ab = 6$

- 이차방정식 $5(x-1)^2-3=2(x-1)$ 의 두 근을 $\alpha,\ \beta$ 라 할 때 $\frac{\alpha}{\beta}$ 의 9. 값은? (단, $\alpha > \beta$)
- ① 1 ② 6 ③ 5 ④ 4 ⑤ -2

x-1 = t라 하면 $5t^2 - 2t - 3 = 0$ $5t^{2} - 2t - 3 = 0$ (5t + 3)(t - 1) = 0 $t = -\frac{3}{5} \, \text{\frac{1}{16}} t = 1$ $\therefore x = \frac{2}{5} \, \text{\frac{1}{16}} t = 2$ $\alpha = 2, \beta = \frac{2}{5} (\because \alpha > \beta)$ $\therefore \frac{\alpha}{\beta} = \frac{2}{2} = 5$

10. (x+y)(x+y-3)-28=0 일 때, x+y 의 값을 모두 구하여라.

답:답:

ightharpoonup 정답: x+y=7 ightharpoonup 정답: x+y=-4

x + y = A 라고 하면

해설

A(A-3) - 28 = 0

 $\begin{vmatrix} A^2 - 3A - 28 = 0 \\ (A - 7)(A + 4) = 0 \end{vmatrix}$

 $\therefore x + y = 7 \, \text{Et} \, x + y = -4$

11. 이차방정식 $(x+1)^2 - (x+1) = 6$ 을 풀어라.

▶ 답: ▶ 답:

▷ 정답: x = 2 ➢ 정답: x = -3

 $(x+1)^2 - (x+1) = 6$

x+1=A 라고 하면 $A^2 - A - 6 = 0$

(A-3)(A+2) = 0(x+1-3)(x+1+2) = 0(x-2)(x+3) = 0

 $\therefore x = 2 \stackrel{\smile}{\to} x = -3$

12. (x-y)(x-y-3)-18=0 일 때, x-y 의 값을 구하여라. (단, x>y)

답:

▷ 정답: 6

해설)

(x-y)(x-y-3)-18=0 , x-y=A 로 치환하면 A(A-3)-18=0 , $A^2-3A-18=0 ,$ (A-6)(A+3)=0 , A=6 또는 A=-3이다. x>y이므로 x-y=6이다.

- 13. 이차방정식 $(x+2)^2-8=2(x+2)$ 의 두 근을 α,β 라 할 때, $\alpha\beta$ 의 값을 구하여라. $(단, \alpha > \beta)$
 - ▶ 답:

▷ 정답: -8

해설

x+2=t로 치환하면 $t^2-2t-8=0$ (t-4)(t+2) = 0

t=4 또는 t=-2

 $\therefore x = 2 \stackrel{\smile}{\to} x = -4$ $\therefore \alpha\beta = 2 \times (-4) = -8$

- **14.** (x+y+4)(x+y) = 12 일 때, x+y 의 값의 합을 구하면?
 - ③ -6 ④ -8 ① 2 ⑤ 10

A = x + y라 하면 (A+4)A = 12

 $A^2 + 4A - 12 = 0$

(A-2)(A+6) = 0 $\therefore A = 2 \, \Xi \stackrel{\smile}{\sqsubset} A = -6$

따라서 x+y의 값의 합은 2+(-6)=-4이다.

- **15.** 이차방정식 $2x^2+bx+c=0$ 의 근을 $x=\frac{-3\pm\sqrt{17}}{4}$ 이라 할 때, 이차방정식 $2x^2-bx-c=0$ 의 두 근의 합은?
 - ① $-\frac{3}{2}$ ② -3 ③ -4 ④ $\frac{3}{2}$ ⑤ 1

 $x = \frac{-b \pm \sqrt{b^2 - 8c}}{4} = \frac{-3 \pm \sqrt{17}}{4}$ 이므로b = 3, c = -1 $\therefore 2x^2 - 3x + 1 = 0, (2x - 1)(x - 1) = 0$ $x = \frac{1}{2} 또는 x = 1$ 따라서 두 근의 함은 $\frac{3}{2}$ 이다.