- **1.** $(6x^3 x^2 5x + 5) \div (2x 1)$ 의 몫을 a, 나머지를 b라 할 때, a + b를
 - ① $3x^2 + x + 1$ ② $x^2 + x + 1$ ③ $3x^2 + 1$
 - ① $x^2 + x 1$ ⑤ $3x^2 + x$

나눗셈을 이용하면 $a = 3x^2 + x - 2$, b = 3 $\therefore a+b=3x^2+x+1$

조립제법을 이용할 수 있다.

이 때, 2x - 1로 나눈 몫은 $x - \frac{1}{2}$ 로 나눈 몫의 $\frac{1}{2}$ 이고 나머지는 같다.

$$f(x) = \left(x - \frac{1}{2}\right)Q(x) + R$$
$$= (2x - 1) \cdot \frac{1}{2} \cdot Q(x) + R$$

- 2. 다음 곱셈공식을 전개한 것 중 바른 것은?
 - ① $(x-y-1)^2 = x^2 + y^2 + 1 2xy 2x 2y$ $(a+b)^2(a-b)^2 = a^4 - 2a^2b^2 + b^4$
 - $(-x+3)^3 = x^3 9x^2 + 27x 27$
 - $(a-b)(a^2+ab-b^2) = a^3-b^3$
 - $(p-1)(p^2+1)(p^4+1) = p^{16}-1$
 - 해설

- ① $(x-y-1)^2 = x^2 + y^2 + 1 2xy 2x + 2y$ ③ $(-x+3)^3 = -x^3 + 9x^2 27x + 27$
- $(a-b)(a^2+ab+b^2) = a^3-b^3$ $(5)(p-1)(p+1)(p^2+1)(p^4+1) = p^8-1$

- **3.** $2x^2 3x 2 = a(x-1)(x+2) + bx(x+2) + cx(x-1)$ 이 x에 대한 항등식이 되도록 a, b, c의 값을 정하면?

 - ① a = 1, b = -1, c = 2 ② a = -1, b = 1, c = -2
 - ⑤ a = 1, b = -1, c = -2
 - ③ a = 1, b = 1, c = 2 ④ a = -1, b = -1, c = -2

수치대입법을 이용한다.

x = 0을 대입 -2 = -2a $\therefore a = 1$

x=1을 대입 -3=3b $\therefore b=-1$ x = -2를 대입 12 = 6c $\therefore c = 2$

4. $f(x) = x^2 - ax + 1$ 이 x - 1로 나누어 떨어질 때 상수 a의 값을 구하여라.

▶ 답:

> 정답: *a* = 2

 $f(1) = 1^2 - a \cdot 1 + 1 = 0$ $\therefore a = 2$

 $\therefore a = 2$

- 다항식 $2x^3 + ax^2 + bx + 3$ 이 다항식 $2x^2 x 3$ 으로 나누어 떨어질 **5.** 때, a + b 의 값은 ?

- ① 3 ② 1 ③ -1 ④ -2 ⑤ -5

해설

$$2x^{3} + ax^{2} + bx + 3 = (2x^{2} - x - 3)Q(x)$$
$$= (x+1)(2x-3)Q(x)$$

$$x = -1$$
 일 때, $-2 + a - b + 3 = 0$

∴
$$a - b = -1$$
 ··· ①
$$x = \frac{3}{2} \text{ Qual}, \frac{27}{4} + \frac{9}{4}a + \frac{3}{2}b + 3 = 0$$

$$x = \frac{3}{3}$$
 일 때, $\frac{27}{4} + \frac{9}{4}a + \frac{3}{3}b + \frac{3}{3}a + \frac$

$$27 + 9a + 6b + 12 = 0$$

∴ $3a + 2b = -13 \cdots$ ©

$$\bigcirc$$
, \bigcirc 에서 $a=-3$, $b=-2$

$$\therefore a+b=(-3)+(-2)=-5$$

6. 다음 중 $a^3 - b^2c - ab^2 + a^2c$ 의 인수인 것은?

① a-b+c ② c-a ③ b+c ④ a-b

 $a^{3} - b^{2}c - ab^{2} + a^{2}c = a^{3} - ab^{2} + a^{2}c - b^{2}c$ $= a(a^{2} - b^{2}) + (a^{2} - b^{2})c$ = (a - b)(a + b)(a + c)

- 자연수 $N=p^nq^mr^l$ 로 소인수분해될 때, 양의 약수의 개수는 (n+1)7. 1)(m+1)(l+1)이다. 이 때, 38³ + 3·38² + 3·38 + 1의 양의 약수의 개수는?
 - ③16개 ② 12개 ④ 24개 ⑤ 32개 ① 9개

38 = x 라 하면, $38^3 + 3 \cdot 38^2 + 3 \cdot 38 + 1 = x^3 + 3x^2 + 3x + 1$

해설

 $= (x+1)^3$ $= 39^3$

 $=13^3\cdot 3^3$

 $\therefore (3+1)(3+1) = 16$

8. $\frac{2-i}{2+i} + \frac{2+i}{2-i}$ 를 간단히 하면? (단, $i = \sqrt{-1}$ 이다.)

 $\bigcirc \frac{6}{5} \qquad \bigcirc 2 \qquad \bigcirc 3 \quad \frac{8}{5} \qquad \bigcirc 4 \quad \frac{8}{3} \qquad \bigcirc 3 \quad 3$

 $\frac{2-i}{2+i} + \frac{2+i}{2-i} = \frac{(2-i)^2 + (2+i)^2}{(2+i)(2-i)}$ $= \frac{3+3}{5} = \frac{6}{5}$

9. $i + i^3 + i^5 + i^7 + \dots + i^{101} = a + bi$ 일 때, a + b 의 값은? (단, a, b는 실수)

① 0

- ②1 3 2 4 3 5 4

(좌변)= $i-i+i-i+\cdots+i=i$ 이므로

해설

i=a+bi 에서 복소수가 서로 같을 조건에 의하여 $a=0,\;b=1$

 $\therefore a+b=1$

- **10.** 이차방정식 $x^2 + 2x + k 3 = 0$ 이 <u>서로 다른</u> 두 실근을 가질 때, 정수 k의 최대값은?

- ① -1 ② 0 ③ 1 ④ 2
- **(5)**3

해설

서로 다른 두 실근을 갖으려면 판별식이 0보다 커야 한다. $D' = 1^2 - (k - 3) > 0$ $\therefore k < 4$

:.최댓값은 3 (:: *k*는 정수)

- **11.** x에 대한 이차식 $2x^2 + (k+1)x + k 1$ 이 완전제곱식이 될 때, k의 값을 구하여라.
 - 답:

▷ 정답: 3

해설

 $2x^2 + (k+1)x + k - 1$ 이 완전제곱식이므로 $D = (k+1)^2 - 8(k-1) = 0$

 $(k-3)^2 = 0$ $\therefore k = 3$

12. $2x^2 + 4x - 1 = 0$ 의 두 근을 α, β 라 할 때, $\alpha^2 \beta + \alpha \beta^2$ 의 값은?

① -2 ② -1 ③ 0

⑤ 2

াপ্র $\alpha + \beta = -2, \ \alpha\beta = -\frac{1}{2}$ $\therefore \ \alpha^2\beta + \alpha\beta^2 = \alpha\beta(\alpha + \beta) = -\frac{1}{2} \times (-2) = 1$

13. 이차방정식 $x^2 + ax + b = 0$ 의 한 근이 1 + 2i 일 때 실수 a, b 를 구하여라.

▶ 답:

▶ 답:

> 정답: *a* = −2

> 정답: *b* = 5

계수가 실수이므로 한 근이 1+2i 이면 다른 한 근은 1-2i 이다.

해설

(두 근의 합) = (1+2i)+(1-2i)=-a ······① (두 근의 곱) = (1+2i)(1-2i)=b ······①

(두 근의 곱) = (1 + 2i)(1 - 2i) = b ······() : ③, ⓒ에서

a = -2, b = 5이다.

14. 함수 $y = \frac{6}{x^2 - 2x + 4}$ 의 최댓값을 구하면?

① 1 ②2 ③ 3 ④ 4 ⑤ 5

 $x^2 - 2x + 4 = (x - 1)^2 + 3 > 0$ 이므로 분모가 최소가 될 때 y 가 최대이다. ∴ x = 1 일 때 최댓값 $\frac{6}{3} = 2$

3

15. x의 범위가 $-1 \le x \le 2$ 일 때, 이차함수 $y = -2x^2 + 4x + 1$ 의 최댓값을 구하면?

① -2 ② 2 ③ 3 ④ 4 ⑤ 5

 $y = -2(x-1)^2 + 3$ ∴ x = 1 일 때, 최댓값 3

해설

16. 모든 모서리의 합이 36, 겉넓이가 56인 직육면체의 대각선의 길이는?

1)5 ② 6 ③ 7 ④ 8 ⑤ 9

직육면체의 가로, 세로, 높이를 각각 a, b, c라 하자. $4(a+b+c) = 36, \ 2(ab+bc+ca) = 56$ $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$

 $a^2 + b^2 + c^2 = 81 - 56 = 25$

 \therefore (대각선의 길이) = $\sqrt{a^2 + b^2 + c^2}$

해설

 $= \sqrt{25} = 5$

- **17.** x에 대한 다항식 $x^3 + ax^2 + bx + 3$ 이 $x^2 + 1$ 로 나누어떨어질 때, 상수 a, b의 값을 정하면?
 - ③ a = 3, b = -1
 - ① a = -1, b = 3 ② a = 1, b = 3
- a = -3, b = -1
- \bigcirc a = 3, b = 1

 $= x^3 + cx^2 + x + c$ $\therefore a = c, b = 1, c = 3$ 따라서 a = 3, b = 1

 $x^{3} + ax^{2} + bx + 3$ $= (x^{2} + 1)(x + c)$

18. (x-3)(x-1)(x+2)(x+4)+24를 인수분해하면 $(x+a)(x+b)(x^2+cx+d)$ 이다. a+b+c-d의 값을 구하여라.

▶ 답: ▷ 정답: 10

해설

 $x^2 + x = A$ 로 치환하면 (x-3)(x-1)(x+2)(x+4) + 24

 $= \{(x-1)(x+2)\}\{(x-3)(x+4)\} + 24$

 $= (x^2 + x - 2)(x^2 + x - 12) + 24$

= (A-2)(A-12) + 24 $= A^2 - 14A + 48 = (A - 6)(A - 8)$

 $= (x^2 + x - 6)(x^2 + x - 8)$ $= (x-2)(x+3)(x^2+x-8)$

 $\therefore a+b+c-d=-2+3+1-(-8)=10$

- **19.** 복소수 z의 켤레복소수를 \bar{z} 라 할 때, $(1+i)z-2i\bar{z}=5-3i$ 를 만족하는 복소수 z는? (단, $i = \sqrt{-1}$)
 - ① 1+i ② 1-i ③ 2+i ④ 2-i ⑤ 1-2i

해설 임의의 복소수 $z = a + bi, \bar{z} = a - bi$

(1+i)(a+bi) - 2i(a-bi) = 5-3ia+bi+ai-b-2ai-2b=5-3i(a-3b) + (-a+b)i = 5 - 3i $\begin{cases} a - 3b = 5 \\ -a + b = -3 \end{cases}$

$$\int -a + b =$$

연립하여 풀면 a=2,b=-1

 $\therefore z = 2 - i$

20. 일차방정식 $a^2x + 1 = a^4 - x$ 의 해는? (단, a 는 실수)

① a

② a+1

③ a-1

 $\bigcirc a^2 - 1$ $\bigcirc a^2 + 1$

해설

 $a^2x + 1 = a^4 - x$ $|A| a^2x + x = a^4 - 1$ $(a^2 + 1)x = (a^2 - 1)(a^2 + 1)$ $\therefore x = a^2 - 1(\because a^2 + 1 > 0)$

21. |x+1| + |x-2| = x+3을 만족하는 해의 합을 구하면?

▶ 답:

▷ 정답: 4

i) x < -1일 때, -x - 1 - x + 2 = x + 3 $\therefore x = -\frac{2}{3} (모순)$

ii) -1≤x<2일 때,

x + 1 - x + 2 = x + 3

 $\therefore x = 0$

iii) x≥2일때,

x + 1 + x - 2 = x + 3

 $\therefore x = 4$

22. 이차방정식 $x^2 - x + m = 0$ 의 한 근이 2일 때, 다른 한 근을 구하여라. (단, m은 상수)

▶ 답:

▷ 정답: -1

해설

 $x^2 - x + m = 0$ 의 한 근이 2이므로

x = 2를 대입하면 $2^2 - 2 + m = 0$ $\therefore m = -2$

2-2+m=0 ...m=-2따라서 주어진 방정식은 $x^2-x-2=0$ 이다.

이 방정식을 풀면 (x-2)(x+1) = 0 에서 x = 2 또는 x = -1

이므로 다른 한 근은 -1이다.

23. x에 관한 이차방정식 $x^2 + 2(m+a-2)x + m^2 + a^2 - 3b = 0$ 이 m의 값에 관계없이 항상 중근을 가질 때, 상수 a,b에 대하여 a+3b의 값은?

① 2 ② 4

36

4 8 **5** 10

해설

중근을 가지려면 판별식이 0이다. $D' = (m + a - 2)^2 - (m^2 + a^2 - 3b) = 0$ $\Rightarrow 2m(a-2) + 4 - 4a + 3b = 0$ m에 관계없이 성립하려면, $a=2 \quad \Rightarrow \quad b=\frac{4}{3}$

$$a + 3b = 6$$

- **24.** 이차함수 $y = x^2 + (m-1)x + m^2 + 1$ 의 그래프가 직선 y = x + 1의 그래프보다 항상 위쪽에 존재하도록 하는 실수 m 의 값의 범위는?
 - ① m < -2 또는 $m > \frac{2}{3}$ ② m < -1 또는 $m > \frac{1}{3}$ ③ $m < \frac{1}{3}$ 또는 m > 2 ④ $m < \frac{2}{3}$ 또는 m > 2
 - ⑤ m < -2 또는 m > 2

이차함수 $y = x^2 + (m-1)x + m^2 + 1$ 의 그래프가 직선 y = x + 1

보다 항상 위쪽에 있으려면 모든 x에 대하여

 $x^{2} + (m-1)x + m^{2} + 1 > x + 1$ $x^2 + (m-2)x + m^2 > 0$ 이 항상 성립하여야 한다.

따라서, 이차방정식 $x^2 + (m-2)x + m^2$ 의 판별식 D < 0 이어야

 $D = (m - 2)^2 - 4m^2 < 0$ (m+2)(3m-2)>0

∴ m < -2 또는 $m > \frac{2}{3}$

25. 다음 그림과 같이 이차함수 $y = -x^2 + a$ 의 그래프와 직선 y = mx가 서로 다른 두 점 P, Q에서 만난다. 점 Q의 x좌표가 $\sqrt{5}-1$ 일 때, a+m의 값을 구하여라. (단, a, m은 유리수)

y=mx

▷ 정답: 6

▶ 답:

 $y = -x^2 + a$ 와 y = mx 가 만나는 두 점 P, Q 의 x 좌표는 방정식이 $-x^2 + a = mx$ 의 근이다. 점 Q의 x 좌표가 $\sqrt{5} - 1$ 이므로 방정식 $x^2 + mx - a = 0$ 의 한 근이 $\sqrt{5} - 1$ 이다. 그런데 a 와 m 이 유리수이므로 다른 한 근은 $-\sqrt{5}-1$ 이다.

따라서, 이차방정식의 근과 계수의 관계에 의하여 $-m = (\sqrt{5} - 1) + (-\sqrt{5} - 1) = -2$

 $-a = (\sqrt{5} - 1)(-\sqrt{5} - 1) = -4$ $\therefore a = 4, \ m = 2 \qquad \therefore a + m = 6$