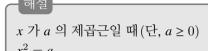
①
$$x = \sqrt{2}$$

$$\sqrt{2}$$

②
$$x = 2^2$$

 $3x^2 = 2$

다음 중 x 가 2 의 제곱근임을 나타내는 식은?



2. 다음을 간단히 하라.
$$\sqrt{\left(\sqrt{13} - 3\right)^2} + \sqrt{\left(3 - \sqrt{13}\right)^2}$$

$$\sqrt{(\sqrt{13}-3)}$$

▶ 답:

$$\sqrt{13} > 3$$
 이므로
$$\sqrt{\left(\sqrt{13} - 3\right)^2} + \sqrt{\left(3 - \sqrt{13}\right)^2}$$

$$= \sqrt{13} - 3 - \left(3 - \sqrt{13}\right)$$

 $=\sqrt{13}-3-3+\sqrt{13}$

 $=2\sqrt{13}-6$

3. $4.1 < \sqrt{x} < 5.6$ 를 만족하는 자연수 x 의 값 중에서 가장 큰 수를 a, 가장 작은 수를 b 라고 할 때, a + b 의 값으로 알맞은 것은?

4) 51

(5) 54

(2) 45

 $4.1 = \sqrt{16.81}$, $5.6 = \sqrt{31.36}$ 이므로

$$16.81 < x < 31.36$$

 $a = 31, b = 17$

$$a = 31, b = 17$$

 $a + b = 17 + 31 = 48$

 \bigcirc 42

4. 다음 보기의 수를 $a\sqrt{b}$ 로 나타냈을 때, a 가 같은 것을 모두 찾아라.

サブ ① $2\sqrt{7}$ ② $\sqrt{8}$ ② $\sqrt{20}$ ② $\frac{\sqrt{24}}{\sqrt{2}}$

- ▶ 답:
- 답:
- ▶ 답:
- ▶ 답:
- ▷ 정답: つ
- ▷ 정답: □
- ▷ 정답: ⑤
- ▷ 정답: ②

- ① $\sqrt{8} = 2\sqrt{2}$ ② $\sqrt{20} = 2\sqrt{5}$

따라서 a 가 같은 것은 \bigcirc , \bigcirc , \bigcirc , \bigcirc 이다.

$$\frac{m}{100}$$

$$\frac{m}{50}$$

$$3 \frac{m}{25}$$

 $\sqrt{10} = m$ 일 때, $\sqrt{0.025}$ 를 m 에 관한 식으로 나타내면?

 $\sqrt{0.025} = \sqrt{\frac{25}{1000}} = \frac{5}{10\sqrt{10}} = \frac{\sqrt{10}}{20} = \frac{m}{20}$

$$\sqrt{2}=a, \ \sqrt{3}=b, \ \sqrt{5}=c$$
 일 때, $\sqrt{360}=6($)로 나타낼 때, ()에 들어갈 것은?

①
$$ac$$
 ② $\sqrt{a}\sqrt{c}$ ③ $\sqrt{b}\sqrt{c}$ ④ bc ⑤ abc

해설
$$\sqrt{360} = \sqrt{3^2 \times 2^3 \times 5} = 6\sqrt{2}\sqrt{5} = 6ac$$

7. -1 < a < 2 일 때, $\sqrt{(a+1)^2} + \sqrt{(a-2)^2} + a - 3$ 을 간단히 하면?

(3) 0

(2) 3a - 4

(4)
$$a-6$$
 (5) $3a+1$

8. $\sqrt{\frac{32}{3}x}$ 가 자연수가 되기 위한 x 의 값 중 가장 큰 두 자리 자연수를 구하여라.

$$\sqrt{\frac{32}{3}}x = \sqrt{\frac{2^4 \times 2}{3}}x \text{ 이므로 } x = \frac{3}{2} \times k^2$$

$$k = 1 일 \text{ 때, } x = \frac{3}{2}$$

$$k = 2 일 \text{ 때, } x = 6$$

$$k = 3 일 \text{ 때, } x = \frac{27}{2}$$

$$k = 4 일 \text{ 때, } x = 24$$

$$k = 5 일 \text{ 때, } x = \frac{75}{2}$$

$$k = 6 일 \text{ 때, } x = 54$$

$$k = 7 일 \text{ 때, } x = \frac{147}{2}$$

$$k = 8 일 \text{ 때, } x = 96$$

$$k = 9 일 \text{ 때, } x = \frac{243}{2}$$

$$x \vdash 7 \text{ 장 큰 두 자리의 자연수이므로 96 이다.}$$

- 9. $\sqrt{48a}$ 와 $\sqrt{52-a}$ 모두 정수가 되도록 하는 양의 정수 a 의 개수는?
 - ① 0 개 ② 1 개 ③ 2 개 ④ 3 개 ⑤ 4 개

$$\sqrt{48a} = \sqrt{2^4 \times 3 \times a} \cdots \textcircled{1}$$

$$52 - a = 0, 1, 4, 9, 16, 25, 49 \cdots \textcircled{2}$$

V48a = V2⁴ × 3 × a · · · ① 52 - a = 0, 1, 4, 9, 16, 25, 49 · · · ② ②를 만족하는 a = 52, 51, 48, 43, 36, 27, 3 이 중 ①을 만족하는 것은 3, 27, 48

10. 다음 식 중에서 x 의 값이 무리수인 것은?

①
$$x^2 = 25$$

④ $x^2 = \frac{3}{27}$

$$2 x^2 = \frac{81}{49}$$

$$x^2 = \frac{49}{1000}$$

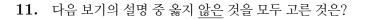
$$3 x^2 = 0.0016$$

①
$$x = \pm 5$$
 : 유리수

②
$$x = \pm \frac{9}{7}$$
 : 유리수

③
$$x = \pm 0.04$$
: 유리수

(4)
$$x = \pm \sqrt{\frac{3}{27}} = \pm \sqrt{\frac{1}{9}} = \pm \frac{1}{3}$$
 : π 리수



보기

- \bigcirc $\sqrt{2}$ 와 $\sqrt{3}$ 사이에는 무수히 많은 유리수가 있다.
- 두 정수 사이에는 또 다른 정수가 있다.
- © $\sqrt{5}$ 와 $\sqrt{7}$ 사이에는 무수히 많은 무리수가 있다.
- ② 서로 다른 무리수의 합은 항상 무리수이다.
- \bigcirc 1 과 2 사이에는 무수히 많은 유리수가 있다.
- ① ⑦,心

② L, @

③ ¬,□,≘

④ □,⊜,□

(5) (7),(E),(E),(E)

해설

- ① 두 정수 사이에는 또 다른 정수가 있다,
- 반례) 1 과 2 사이에는 정수가 존재하지 않는다.
- ② 서로 다른 무리수의 합은 항상 무리수이다. 반례) $\sqrt{3} + (-\sqrt{3}) = 0$ 유리수가 되는 경우도 존재한다.

12. 다음 두 수의 대소를 비교한 것 중 옳은 것은?

 $1 > \sqrt{3} + 2$

② $\sqrt{11} - 3 > \sqrt{11} - \sqrt{8}$

 $3 > \sqrt{13}$

 $4 \sqrt{\frac{1}{2}} < \frac{1}{3}$

 $\bigcirc 2 + \sqrt{2} > 2 + \sqrt{3}$

$$\therefore \quad 4 > \sqrt{3} + 2$$

②
$$\sqrt{11} - 3 - (\sqrt{11} - \sqrt{8}) = -3 + \sqrt{8}$$

= $-\sqrt{9} + \sqrt{8} < 0$

$$1.0 \cdot \sqrt{11} - 3 < \sqrt{11} - \sqrt{8}$$

$$\therefore 3 < \sqrt{13}$$

(좌변)=
$$\left(\sqrt{\frac{1}{2}}\right)^2 = \frac{1}{2}$$
, (우변)= $\left(\frac{1}{3}\right)^2 = \frac{1}{9}$

$$\therefore \quad \sqrt{\frac{1}{2}} > \frac{1}{3}$$

$$(5) 2 + \sqrt{2} - (2 + \sqrt{3}) = \sqrt{2} - \sqrt{3} < 0$$

$$(2 + \sqrt{2} < 2 + \sqrt{3})$$

13. 다음은 수직선을 보고 설명한 것이다. 다음 중 옳은 것은?

- ① √13 6 에 대응하는 점은 B 이다.
- ② 점 A 와 C 사이의 양의 정수는 세 개이다.
- ③ $-\sqrt{7} + 5 = \frac{n}{m}$ 으로 나타낼 수 있다.
- ④ √5 + 1 이 속하는 구간은 E 이다.
- ⑤ $\sqrt{2} 1$ 은 $1 \sqrt{2}$ 보다 왼쪽에 위치한다.

해설

- ① $\sqrt{13}$ 6 에 대응하는 점은 A 이다.
- ② 점 A 와 C 사이의 양의 정수는 없다.
- ③ 무리수는 $\frac{n}{m}$ 으로 나타낼 수 없다.
- ⑤ $\sqrt{2} 1$ 은 $1 \sqrt{2}$ 보다 오른쪽에 위치한다.

14. 다음은 주어진 제곱근표를 보고 제곱근의 값을 구한 것이다. 옳지 않은 것은?

수	0	1	2	3	4
:	:	:	:	:	:
2.0	1.414	1.418	1.421	1.425	1.428
2.1	1.449	1.453	1.456	1.459	1.463
2.2	1.483	1.487	1.490	1.493	1.497
2.3	1.517	1.520	1.523	1.526	1.530
2.4	1.549	1,552	1,556	1.559	1,562
:	:	:	:	:	÷
20	4.472	4.483	4.494	4.506	4.517
21	4.583	4.593	4.604	4.615	4.626
22	4.690	4.701	4.712	4.722	4.733
23	4.796	4.806	4.817	4.827	4.837
24	4.899	4.909	4.919	4.930	4.940

①
$$\sqrt{0.2} = 0.4472$$

②
$$\sqrt{210} = 14.49$$

③
$$\sqrt{220} = 14.83$$

$$\sqrt{0.23} = 47.96$$

15.
$$\frac{\sqrt{4^2}}{2} = a, -\sqrt{(-6)^2} = b, \sqrt{(-2)^2} = c$$
라 할 때, $2a^2 \times b^2 - b \div c$ 의 값은?

해설
$$a = \frac{\sqrt{4^2}}{2} = \frac{4}{2} = 2, b = -\sqrt{(-6)^2} = -6, c = \sqrt{(-2)^2} = 2$$

$$\therefore 2a^2 \times b^2 - b \div c = 2 \times 4 \times 36 - (-6) \times \frac{1}{2}$$

$$= 288 + 3 = 291$$

16. \sqrt{x} 이하의 자연수의 개수를 N(x) 라고 하면 $2<\sqrt{5}<3$ 이므로 N(5)=2 이다. 이 때, $N(1)+N(2)+N(3)+\cdots+N(10)$ 의 값을 구하여라.

지 = 1,
$$\sqrt{4} = 2$$
, $\sqrt{9} = 3$ 이므로 $N(1) = N(2) = N(3) = 1$ $N(4) = N(5) = \cdots = N(8) = 2$

$$N(4) = N(5) = \dots = N(8) = 2$$

$$N(9) = N(10) = 3$$

$$\therefore N(1) + N(2) + N(3) + \dots + N(10) = 1 \times 3 + 2 \times 5 + 3 \times 2 = 19$$

17.
$$\frac{k}{\sqrt{3}}(\sqrt{3}-\sqrt{2})+\frac{\sqrt{8}-2\sqrt{3}+6\sqrt{3}}{\sqrt{2}}$$
의 값이 유리수가 되도록 하는 유리수 k 의 값은?

① 6 ② 4 ③ -4 ④ -6 ⑤ -10

해설
$$(준식) = k - \frac{\sqrt{2}}{\sqrt{3}}k + \frac{\sqrt{16} - 2\sqrt{6} + 6\sqrt{6}}{2}$$

$$= k - \frac{\sqrt{2}}{\sqrt{3}}k + 2 + 2\sqrt{6}$$

$$= -\frac{k}{3}\sqrt{6} + 2\sqrt{6} + k + 2$$

$$= \left(-\frac{k}{3} + 2\right)\sqrt{6} + k + 2$$
값이 유리수가 되려면
$$-\frac{k}{3} + 2 = 0$$

$$\therefore k = 6$$

18. 부등식 $3 \le (\sqrt{2} + 1)x \le 7$ 을 만족하는 자연수 x를 구하여라.

$$3 \le (\sqrt{2} + 1)x \le 7$$
 에서 $\sqrt{2} + 1 > 0$ 이므로

$$\frac{3}{\sqrt{2}+1} \le x \le \frac{7}{\sqrt{2}+1} \ \therefore \ 3\sqrt{2}-3 \le x \le 7\sqrt{2}-7$$

$$4 < 3\sqrt{2} = \sqrt{18} < 5$$
 에서 $1 < 3\sqrt{2} - 3 < 2$
 $9 < 7\sqrt{2} = \sqrt{98} < 10$ 에서 $2 < 7\sqrt{2} - 7 < 3$
 $1. \times \times \times \le x \le 2. \times \times \circ$ 이므로

따라서 자연수 x=2 이다.

19. 한 변의 길이가 9인 정사각형의 내부에 10 개의 점을 놓을 때, 두 점사이의 거리가 r이하인 두 점이 반드시 존재한다. 이때 r의 최댓값을 구하여라.

> 정답: 3√2

▶ 답:

해설

한 변의 길이가 9인 정사각형의 내부를 한 변의 길이가 3인 작은 정사각형 9개로 나누고 작은 정사각형 한 개안에 하나의 점을 놓는다고 할 때, 모두 10 개의 점을 놓아야 하므로 반드시 2 개의 점은 한 개의 작은 정사각형 안에 들어간다. 한 변의 길이가 3인 작은 정사각형 안에 2 개의 점을 놓을 때두 점 사이의 거리의 최댓값은 작은 정사각형의 대각선의 길이이므로 $3\sqrt{2}$ 이므로 $r=3\sqrt{2}$

20. 다음 조건을 보고, a - b 의 값을 구하여라.

(1)
$$a 는 4 - \sqrt{3}$$
 의 정수부분이다.

- (2) $b \leftarrow 2x + 7y = 15x 8y$ 일 때, $\sqrt{\frac{x+y}{x-y}}$ 의 값을 넘지 않는 최대의 정수이다.
- ▶ 답:
- \triangleright 정답: a b = -1

(1)
$$1 < \sqrt{3} < 2$$
 이므로 $2 < 4 - \sqrt{3} < 3$: $a = 2$

(2)
$$2x + 7y = 15x - 8y$$
 에서 $y = \frac{13}{15}x$ 이므로

$$\sqrt{\frac{x+y}{x-y}} = \sqrt{\frac{x+\frac{13}{15}x}{x-\frac{13}{15}x}} = \sqrt{\frac{\frac{28x}{15}}{\frac{2x}{15}}} = \sqrt{14}$$

$$3 < \sqrt{14} < 4$$
 이므로 $\sqrt{\frac{x+y}{x-y}} = \sqrt{14}$ 를 넘지 않는 최대 정수는

3 이다.

$$\therefore b = 3$$

따라서 $a - b = 2 - 3 = -1$ 이다.