1. 두 다항식 A, B에 대하여 연산 $A \ominus B$ 와 $A \otimes B$ 을 다음과 같이 정의하 기로 한다. $A \ominus B = A - 3B, \ A \otimes B = (A + B)B$

 $P = 2x^3 + 2x^2y + 3xy^2 - y^3$, $Q = x^3 + x^2y + xy^2$ 이라 할 때, $(P \ominus Q) \otimes Q = x, y$ 에 관한 다항식으로 나타내면?

- ① $x^4y^2 + xy^5$ ② $x^4y^2 xy^5$ ③ $x^3y^2 xy^4$ ④ $x^3y^2 + xy^4$ ⑤ $2x^3y^2 xy^4$

2.	다음	안에 알맞은 수를 차례대로 써 넣어라.

$(x^3 + 4x^2 + 3x - 2) \div ($ _	$_{x^{2}}+[_{x^{2}}$	x +) = x + 2	

- 한: ____
- ▶ 답: _____

3. 다항식 $f(x) = 4x^3 + ax^2 + x + 1$ 을 $x + \frac{1}{2}$ 로 나누면 나머지가 1일 때, 다항식 f(x)를 2x + 1로 나눈 몫 Q(x)와 나머지 R을 구하면?

(3)
$$Q(x) = 2x^2 - 2x$$
 $R = 1$ (4) $Q(x) = 4x^2 - 2x$ $R = 1$

①
$$Q(x) = 2x^2 - x, R = 1$$
 ② $Q(x) = 2x^2 + x, R = 1$ ③ $Q(x) = 2x^2 - 2x, R = 1$ ④ $Q(x) = 4x^2 - 2x, R = \frac{1}{2}$ ⑤ $Q(x) = 4x^2 + 2x, R = \frac{1}{2}$

$$Q(x) = 4x^2 + 2x, R = \frac{1}{2}$$

4. x + y + z = 1, xy + yz + zx = 2, xyz = 3 일 때, (x + 1)(y + 1)(z + 1) 의 값을 구하여라.

▶ 답: _____

5. 다음 식을 전개한 것 중 옳은 것을 고르면?

①
$$(x-y-z)^2 = x^2 - y^2 - z^2 - 2xy + 2yz - 2zx$$

② $(3x-2y)^3 = 27x^3 - 54x^2y + 18xy^2 - 8y^3$

$$(3x + y)(x - y)(x^2 + xy - y^2)(x^2 - xy + y^2) = x^9 - y^9$$

$$(x^2 - 2xy + 2y^2)(x^2 + 2xy + 2y^2) = x^4 + 4y^4$$

$$(x+y-1)(x^2+y^2-xy+2x+2y+1) = x^3+y^3-3xy-1$$

6. (x-1)(x+2)(x-3)(x+4)를 전개할 때, 각 항의 계수의 총합을 a, 상수항을 b라 할 때, a+b의 값을 구하면?

① 8 ② 15 ③ 24 ④ 36 ⑤ 47

7. 다음 다항식의 일차항의 계수는?

 $(1+x+x^2)^2(1+x) + (1+x+x^2+x^3)^3$

① 3 ② 4 ③ 5 ④ 6 ⑤ 7

8. $a^2 + b^2 + c^2 = 9$, ab + bc + ca = 9, a + b + c의 값은?

 $-3\sqrt{2}$ ② $-2\sqrt{3}$ ③ $\pm 3\sqrt{3}$ $\pm 3\sqrt{2}$ 5 $\sqrt{6}$

9. $x^2 - x + 1 = 0$ 일 때, $x^5 + \frac{1}{x^5}$ 의 값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

10. $\frac{x+1}{3} = y-2$ 를 만족하는 모든 실수 x, y에 대하여, 항상 ax+by=7이 성립할 때, a, b의 값을 구하여라. (a, b 는 상수)

> 답: a = ______

11. 등식 $\frac{2x^2 + 13x}{(x+2)(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+2}$ 가 x에 대한 항등식 이 되도록 상수 A, B, C의 값을 정할 때, A+B+C의 값은?

① 6 ② 7 ③ 8 ④ 9 ⑤ 10

12. $\frac{2x + ay - b}{x - y - 1}$ 가 $x - y - 1 \neq 0$ 인 어떤 x, y의 값에 대하여도 항상 일정한 값을 가질 때, a - b의 값을 구하여라.

13. 다항식 $6x^3 - 7x^2 + 17x - 3$ 을 3x - 2로 나눈 몫을 Q(x), 나머지를 R이라 할 때, Q(1) + R의 값을 구하여라.

14. x에 대한 다항식 $(4x^2 - 3x + 1)^5$ 을 전개하였을 때, 모든 계수들(상수항 포함)의 합은?

① 0 ② 16 ③ 32 ④ 64 ⑤ 1024

15. 다항식 $f(x)=a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0$ 가 $x-\alpha$ 로 나누어떨어질 때, f(f(x))를 $x - \alpha$ 로 나눈 나머지는?

- ① 0
- $\bigcirc a_0$ $\Im a_1$
- 4 a_5

16. x에 대한 항등식 $x^{1997}+x+1$ 을 x^2-1 로 나누었을 때의 몫을 Q(x)라 할 때, Q(x)의 모든 계수와 상수항의 합을 구하면?

① 997 ② 998

③ 1997 ④ $\frac{1997}{2}$ ⑤ $\frac{1997}{3}$

17. 다항식 $2x^{30} + 2x^{28} - x$ 를 x + 1로 나누었을 때의 몫을 Q(x)라 할 때, Q(x)를 x-1로 나누었을 때의 나머지는?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

로 나누면 나머지가 4이다. 이 때, f(x)를 $(x+1)(x-1)^2$ 으로 나눌 때, 나머지를 $ax^2 + bx + c$ 라 하면 a + b + c의 값은?

18. x에 대한 다항식 f(x)를 $(x-1)^2$ 으로 나누면 나누어 떨어지고, x+1

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

- 19. 1000^{10} 을 1001로 나눌 때 몫과 나머지를 각각 Q(x), R라 할 때, 다음 중 나머지 R를 구하기 위한 가장 적절한 식은?
 - ① $x^{10} = xQ(x) + R$ ② $x^{10} = (x-1)Q(x) + R$
 - $3 x^{10} = (x+1)Q(x) + R$

20. x 에 대한 다항식 $4x^3 - 3x^2 + ax + b$ 가(x+1)(x-3)을 인수로 갖도록 a+b의 값을 정하여라.