1. 다음 보기의 수를 $a\sqrt{b}$ 로 나타냈을 때, a 가 <u>다른</u> 하나를 골라라.

답:

▷ 정답: ②

 $\sqrt{43} = 3 \text{ V}$ $\sqrt{21} = \sqrt{2}$

따라서 a 가 다른 하나는 ②이다.

2. 6x² + 7x - 3 = (2x + a)(3x + b) 일 때, 정수 a, b 에 대하여 a - b 의 값을 구하면?

$$6x^{2} + 7x - 3 = (2x + 3)(3x - 1)$$

$$a = 3, b = -1$$

$$\therefore a - b = 4$$

3. $(2x+1)^2 - (x-2)^2 = (3x+a)(x+b)$ 일 때, a+3b의 값을 구하면?

① 4 ② 6 ③ 7 ④8 ⑤ 9

$$2x + 1 = A, x - 2 = B$$
로 치환하면 $(2x + 1)^2 - (x - 2)^2$
= $A^2 - B^2 = (A + B)(A - B)$
= $(2x + 1 + x - 2)(2x + 1 - x + 2)$
= $(3x - 1)(x + 3)$
 $\therefore a = -1, b = 3$

a + 3b = -1 + 9 = 8

다음 보기 중 m의 값이 다른 하나는?

$$\bigcirc -m^2 + 2m - 1 = 0$$

$$\bigcirc$$
 $-4m + 2m^2 + 2 = 0$ \bigcirc $-2 - 4m + 2m^2 = 0$

$$\bigcirc, \, \bigcirc, \, \bigcirc, \, \bigcirc (m-1)^2 = 0$$

$$\therefore m = 1$$

, . , , . . .

- - (3) $x^2 = 4$
- (5) $x^2 + 5x + 6 = 0$

$$2x^2 + x - 3 = 0$$

(4) $x^2 + 5x = 0$

중군을 갖는 이차방정식은
$$(ax + b)^2 = 0$$
이다.
① $x^2 - 6x + 9 = 0 \leftrightarrow (x - 3)^2 = 0$

다음 이차방정식 중 중근을 갖는 것은?

∴ x = 3 (중구)

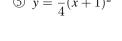
6. 이차함수 $y = \frac{3}{2}x^2 + 6x - 3$ 은 x = a 일 때, 최솟값 b 를 갖는다고한다. a - b 의 값을 구하면?

해설
$$y = \frac{3}{2}(x^2 + 4x) - 3 = \frac{3}{2}(x+2)^2 - 9 \text{ 에서}$$

a = -2 , b = -9

그러므로 a - b = 7 이다.

다음 이차함수 중 최댓값을 갖는 것은?


①
$$y = x^2 + x - 1$$

$$(1) y = x^2 + x - 1$$

③
$$y = \frac{1}{5}x^2 + 4$$

⑤ $y = \frac{3}{4}(x+1)^2$

$$2 y = \frac{1}{2}(x-1)^2 + 1$$

$$y = -x^2 - 2x + 1$$

이차항의 계수가 음수인 것을 찾는다.

8. 이차함수 $y = -5x^2 + 20x + 3$ 은 x = a일 때, 최솟값 b를 갖는다. a + b의 값은?

① 20 ② 22 ③ 23 ④ 25 ⑤ 27

해설

$$y = -5x^2 + 20x + 3$$

 $= -5(x^2 - 4x + 4 - 4) + 3$
 $= -5(x - 2)^2 + 23$
 $\therefore a = 2, b = 23$
 $\therefore a + b = 2 + 23 = 25$

여라.

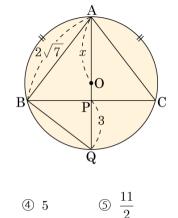
다음 그림의 직육면체에서 $\overline{FD} + \overline{DG}$ 의 값을 구하

9.

답:

$$\overline{DG} = \sqrt{6^2 + 8^2} = 10$$

$$\overline{FD} = \sqrt{(\sqrt{21})^2 + 6^2 + 8^2} = \sqrt{121} = 11 \text{ 이다.}$$
 따라서 $\overline{FD} + \overline{DG} = 21 \text{ 이다.}$


10. 다음 그림에서 $\angle BQR = 75^{\circ}$ 일 때, $\angle AOB$ 의 크기를 구하여라.

- ▶ 답:
- ▷ 정답: 150°

 $\angle APB = \angle BQR = 75^{\circ}, \ \angle AOB = 75^{\circ} \times 2 = 150^{\circ}$

11. 그림에서 5.0ptAB = 5.0ptAC 이고 $\overline{AB} = 2\sqrt{7}$, $\overline{PQ} = 3$ 일 때, 원 O 의 반지름의 길이는?

$$\bigcirc \frac{7}{2}$$

② 4 ③
$$\frac{9}{2}$$

$$(2\sqrt{7})^2 = (2x - 3) \times 2x$$
$$2x^2 - 3x - 14 = 0$$
$$(x + 2)(2x - 7) = 0$$
$$\therefore x = \frac{7}{2} (\because x > 0)$$

 $\overline{AB}^2 = \overline{AP} \cdot \overline{AQ}$

12. 다음 세 수 A, B, C 의 대소 관계를 구하려고 한다. 다음 중 대소 관계를 나타낸 것으로 <u>틀린</u> 것을 모두 고르면?

$$A = \sqrt{5} + \sqrt{3}$$
, $B = \sqrt{5} + 1$, $C = 3 + \sqrt{3}$

①
$$A < B$$
 ② $A > B$ ③ $A < C$ ② $B < A < C$

$$(1) A - B = \left(\sqrt{5} + \sqrt{3}\right) - \left(\sqrt{5} + 1\right)$$
$$= \sqrt{3} - 1 > 0$$
$$\therefore A > B$$

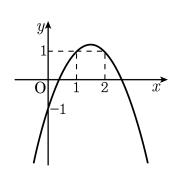
(2)
$$A - C = (\sqrt{5} + \sqrt{3}) - (3 + \sqrt{3})$$

= $\sqrt{5} - 3 < 0$

A < C

13. 이차방정식 $x^2 + ax + 6 = 0$ 의 한 근이 3이고 다른 한 근이 이차방정식 $5x^2 - x + b = 0$ 의 한 근일 때, a - b 의 값을 구하여라.

$$x^2 + ax + 6 = 0$$
 에 $x = 3$ 을 대입하면 $a = -5$ 이다. $x^2 - 5x + 6 = 0$, $(x - 2)(x - 3) = 0$ 이므로


다른 한 근은
$$x = 2$$
이다.

$$5x^2 - x + b = 0$$
 에 $x = 2$ 를 대입하면 $b = -18$
 $\therefore a - b = -5 - (-18) = 13$

14. 지철이가 높이 30m 되는 건물의 옥상에서 야구공을 위를 향해서 초속 25m 로 던졌다. 이 때, x 초 후의 이 야구공의 지상으로부터의 높이는 (30+25x-5x²)m 라고 한다. 야구공의 높이가 처음으로 60m 가 되는데 걸리는 시간은?

15. 이차함수 $y = ax^2 + bx + c$ 의 그래프가 다음 그림과 같을 때, a + 3b + c 의 값은?

① 1 ② 3 ③ 5 ④ 7 ⑤ 9

세 점
$$(0, -1)$$
, $(1, 1)$, $(2, 1)$ 을 지나는 그래프이다.
점 $(0, -1)$ 을 지나므로 $-1 = c$
점 $(1, 1)$ 을 지나므로 $1 = a + b + c$
점 $(2, 1)$ 을 지나므로 $1 = 4a + 2b + c$
세 식을 연립하면 $a = -1$, $b = 3$, $c = -1$ 이므로 $a + 3b + c = -1 + 9 + (-1) = 7$ 이다.

16. 세 점 (0,-8), (1,-5), (3,-5)를 지나는 포물선의 꼭짓점의 좌표는?

①
$$(1, -3)$$
 ② $(1, 4)$ ③ $(-2, 3)$ ④ $(2, -4)$

해설

$$y = ax^2 + bx + c$$
로 놓고 세 점을 각각 대입하면
 $c = -8$, $a + b - 8 = -5$, $9a + 3b - 8 = -5$
 $\therefore a = -1$, $b = 4$, $c = -8$
 $\therefore y = -x^2 + 4x - 8$

따라서 꼭짓점의 좌표는 (2, -4)이다.

 $=-(x-2)^2-4$

17. 다음은 학생 20명의 체육 실기 점수를 나타낸 도수분포표이다. 이 분포의 평균을 구하여라.

계급(점)	도수(명)
0° % ~ 4 [□]	1
4 ^{이상} ∼ 8 ^미	
8 ^{이상} ~ 12 ^미	
12 ^{이상} ~ 16 ^미	
16° ▷ ~ 20□	만 2
합계	20

답:

점

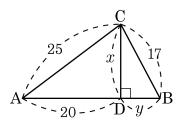
▷ 정답 : 12점

계급값이 각각 2,6,10,14,18이므로

계급없이 각각 2,6,10,14,18이므로
(평 균)=
$$\frac{(2\times1+6\times2+10\times5+14\times10+18\times2)}{(2\times1+6\times2+10\times5+14\times10+18\times2)}$$

 $\frac{2+12+50+140+36}{20} = \frac{240}{20} = 12(점)$

18. 5개의 변량 3,5, x, 6, 8의 평균이 6일 때, 분산을 구하여라. (단, 소수로 쓸 것)


주어진 변량의 평균이
$$6$$
이므로 $\frac{3+5+x+6+8}{6} = 6$

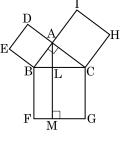
$$5$$

$$22 + x = 30$$

$$\frac{(-3)^2 + (-1)^2 + 2^2 + 2^2}{5} = \frac{9+1+4+4}{5} = \frac{18}{5} = 3.6$$

19. 다음 그림에서 x + y 의 값을 구하여라.

$$\triangle$$
ACD 가 직각삼각형이므로 $x = \sqrt{25^2 - 20^2} = \sqrt{225} = 15$ $y = \sqrt{17^2 - 15^2} = \sqrt{64} = 8$


$$\therefore x + y = 15 + 8 = 23$$

20. 다음 그림은 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC 의 세 변을 각각 한 변으로 하는 정사각형을 그린 것이다. 다음 중 옳지 않은 것은?

 $\overline{1}$ $\overline{BH} = \overline{AG}$

해설

- ② $\triangle EBC \equiv \triangle ABF$
- \bigcirc \triangle ACH = \triangle LMC
- $\textcircled{4} \ \Delta ADB = \frac{1}{2} \square BFML$ $\textcircled{5} \ \Delta ABC = \frac{1}{2} \square ACHI$

 \bigcirc $\triangle ABC = \frac{1}{2} \times \overline{AB} \times \overline{AC}$

 \square ACHI = \overline{AC}^2 이므로 $\triangle ABC \neq \frac{1}{2}\square ACHI$ 이다.

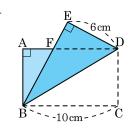
21. 세 변의 길이가 각각 x - 1, x, x + 1 인 삼각형이 둔각삼각형이 되기 위한 x 의 값의 범위는 ?

(3) 3 < x < 4

①
$$1 < x < 2$$
② $2 < x < 4$

②
$$2 < x < 3$$

③ $4 < x < 6$


변의 길이는 양수이므로 x-1>0, x>1작은 두 변의 합 > 나머지 한 변 x-1+x>x+1 에서 x>2

둔각삼각형이므로.

$$(x+1)^2 > x^2 + (x-1)^2$$
 에서
 $x^2 - 4x < 0, x(x-4) < 0$
 $x > 1$ 이므로 x 로 양변을 나누면 $x < 4$ 이다.

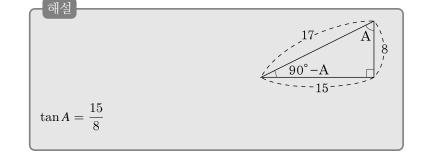
그러므로 공통된 범위는 2 < *x* < 4

22. 다음 그림은 직사각형 ABCD 를 대각선 BD 를 접는 선으로 하여 접었을 때, FD 의 길이는?

(2)
$$\frac{1}{5}$$

$$\triangle BAF \equiv \triangle DEF \text{ (ASA 합동)}, \overline{FD} = x 로 놓으면, \overline{AF} = 10 - x, \overline{BF} = x$$
 $\triangle ABF 에서, x^2 = 6^2 + (10 - x)^2$

$$\therefore \ x = \frac{34}{5}$$


23. 두 점 A(3a-1,-4) B(5,2a-2) 사이의 거리가 $\sqrt{43}$ 이 되도록 하는 양의 실수 a 의 값을 구하여라.

두 점 A, B 사이의 거리를 구하면
$$\sqrt{(3a-1-5)^2+(-4-2a+2)^2}$$
$$=\sqrt{13a^2-28a+40}=\sqrt{43}$$
이므로 $13a^2-28a+40=43$, $13a^2-28a-3=0$, $a=-\frac{13}{3}$, 1이다. 따라서 양의 실수 $a=1$ 이다.

24.
$$\sin(90^{\circ} - A) = \frac{8}{17}$$
일 때, $\tan A$ 의 값을 구하여라. (단, $(0^{\circ} < A < 90^{\circ})$

$$ightharpoons$$
 정답: $rac{15}{8}$

25.
$$x = 3 + \sqrt{2}$$
 일 때, $\frac{x+7}{x-3}$ 의 값은?

(1)
$$-1 + 5\sqrt{2}$$

$$\sqrt{2}$$
 ② $1 - 3\sqrt{2}$

$$4 2 + 2\sqrt{2}$$

해설
$$\frac{x+7}{x-3} = \frac{10+\sqrt{2}}{\sqrt{2}} = \frac{10+\sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = 5\sqrt{2}+1$$

⑤ $2 + 5\sqrt{2}$

 $3 + 5\sqrt{2}$

26. 다음 보기의 A, B, C, D, E 에서 가장 큰 수와 가장 작은 수의 곱을 구하여라.

 \bigcirc $\sqrt{75} = A\sqrt{3}$ \bigcirc $\sqrt{2^2 \times 5^2 \times 3} = B\sqrt{3}$

©
$$3\sqrt{3} + 4\sqrt{3} = C\sqrt{3}$$
 @ $\frac{3\sqrt{2}}{\sqrt{6}} = D\sqrt{3}$
© $\sqrt{0.21} \div \sqrt{7} = E\sqrt{3}$

해설
$$\sqrt{5 \times 5 \times 3} = 5\sqrt{3} \therefore A = 5$$

①
$$\sqrt{\frac{21}{100} \times \frac{1}{7}} = \sqrt{\frac{3}{100}} = \frac{1}{10} \sqrt{3}$$
 \therefore E = 0.1
가장 큰 수 : 10, 가장 작은 수 : 0.1

 $10 \times 0.1 = 1$

27. 다음 중 세 수 p, q, r 를 수직선에 나타내려고 한다. 바르게 연결된 것은?

$$p = \sqrt{3} + \sqrt{5}$$
, $q = \sqrt{3} - 2$, $r = \sqrt{5} + 2$

①
$$A = p$$
, $B = q$, $C = r$ ② $A = q$, $B = p$, $C = r$

③
$$A = q$$
, $B = p$, $D = r$ ④ $B = p$, $C = q$, $D = r$

⑤ B = r, C = p, D = q

(1)
$$p - q = \sqrt{3} + \sqrt{5} - (\sqrt{3} - 2) = \sqrt{5} + 2 > 0 : p > q$$

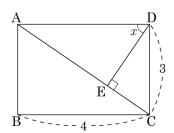
(1)
$$p - q = \sqrt{3} + \sqrt{3} - (\sqrt{3} - 2) = \sqrt{3} + 2 > 0$$
. $p > q$
(2) $q - r = \sqrt{3} - 2 - (\sqrt{5} + 2) = \sqrt{3} - \sqrt{5} - 4 < 0$: $r > q$

 $r = \sqrt{5} + 2$ 에서 $\sqrt{5}$ 의 범위는 $2 < \sqrt{5} < 3$ 이므로 4 < r < 5

위치하다

따라서 $r \in C$, $p \in B$ 에 위치한다.

28. $x = \sqrt{3} + \sqrt{2}$, $y = \sqrt{3} - \sqrt{2}$ 일 때, $(x^n - y^n)^2 - (x^n + y^n)^2$ 의 값을 구하여라. (단, n 은 양의 정수)


해설
$$(x^n - y^n)^2 - (x^n + y^n)^2$$
$$= (x^n - y^n + x^n + y^n)($$

$$= (x^n - y^n + x^n + y^n)(x^n - y^n - x^n - y^n)$$

= $2x^n \times (-2y^n) = -4(xy)^n$

$$xy = (\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 1$$

$$xy = (\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) =$$

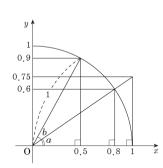
$$\therefore -4(xy)^n = -4$$

29. 다음 그림과 같은 직사각형 ABCD에 서 sin *x* 의 값을 구하여라.

▶ 답:

$$\triangleright$$
 정답: $\frac{4}{5}$

해설

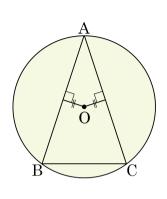

$$\angle x = \angle \text{CAB}$$
이고, $\sin x = \frac{\overline{BC}}{\overline{AC}}$ 이다.

이 때, △ABC는 직각삼각형이므로

따라서 $\sin x = \frac{4}{5}$ 이다.

 $\overline{AC} = \sqrt{3^2 + 4^2} = 5$

30. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 다음 중 옳은 것은?


①
$$\sin a = 0.8$$

 $\cos a = 0.6$

③ $\cos b = 0.9$

31. 다음 그림의 원 O 에서 5.0ptBC = 10π, ∠BAC = 30° 일 때, 5.0ptAC 의 길이는?

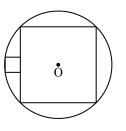
① 15π ② 18π ③ 22π ④ 25π ⑤ 30π

해설 원의 중심에서 현이 이르는 거리가 같으면 두 현의 길이가 같으므로
$$\overline{AB} = \overline{AC}$$
 인 이등변 삼각형이다. $\angle A = 30^\circ$ 이므로 $\angle ABC = 75^\circ$

또한 원주각의 크기에 호의 길이는 비례하므로

$$5.0 \text{ptBC} : 5.0 \text{ptAC} = \angle BAC : \angle ABC$$

$$10\pi : 5.0 \text{ptAC} = 30^{\circ} : 75^{\circ}$$


$$\therefore 5.0 \text{ptAC} = 25\pi$$

32. $2 < \sqrt{a+2b} < 3$ 을 만족하는 순서쌍 $(a,\ b)$ 는 모두 몇 개인지 구하여라. (단, $a,\ b$ 는 자연수, $a \neq b$)

해설
$$2 < \sqrt{a+2b} < 3$$
 , $\sqrt{4} < \sqrt{a+2b} < \sqrt{9}$

a+2b=5 , 6 , 7 , 8 (a, b)=(1, 2) , (3, 1) , (4, 1) , (1, 3) , (3, 2) , (5, 1) , (2, 3) , (4, 2) , (6, 1) 따라서 9개이다.

33. 다음 그림과 같이 두 정사각형의 한 변이 붙어있으면서 반지름의 길이가 5√2 인 원 O 에 내접하고 있다. 두 정사각형의 한 변의 길이의 차를 구하여라.

▶ 답:

▷ 정답: 8

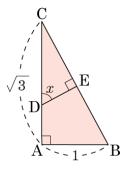
다음 그림과 같이 원의 중심 O 에서 \overline{PS} 의 연장선에 내린 수선의 발을 H 라 하면 $\overline{OA} = 5\sqrt{2}$

$$\overline{AC} = 2\overline{OA} = 10\sqrt{2}$$

따라서 큰 정사각형의 한 변의 길이는 10

이다. $B^{\mathbf{N}}$ 한편 작은 정사각형의 한 변의 길이를 x 라 하면

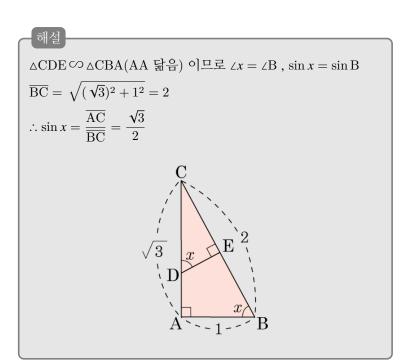
$$\overline{OH} = \frac{x}{2}, \ \overline{PH} = x + 5$$
이므로

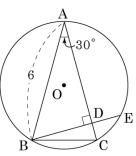

△POH 에서

$$(x+5)^{2} + \left(\frac{x}{2}\right)^{2} = \left(5\sqrt{2}\right)^{2}$$
$$x^{2} + 10x + 25 + \frac{x^{2}}{4} = 50$$
$$x^{2} + 8x - 20 = 0$$

 $\therefore x = 2 (x > 0)$

따라서 작은 정사각형의 한 변의 길이는 2 이므로, 두 정사각형의 한 변의 길이 차는 10 - 2 = 8 이다.


다음 그림에서 $\sin x$ 의 값은?


①
$$\sqrt{2}$$
 ② $\frac{\sqrt{2}}{2}$ ③ $\frac{\sqrt{3}}{2}$ ④ $\sqrt{3}$ ⑤ $\frac{\sqrt{3}}{3}$

$$\bigcirc \frac{\sqrt{2}}{2}$$

$$\boxed{5} \quad \frac{\sqrt{3}}{3}$$

35. 다음 그림과 같이 ĀB = ĀC = 6, ∠BAC = 30°인 △ABC 의 외접원 O가 있다. 점 B에서 변 AC 에 수선을 그어 원 O와의 교점을 E라 할 때, ĒD 의 길이를 구하여라.

답:

$$ightharpoonup$$
 정답: $6\sqrt{3} - 9$

 $\therefore \overline{DE} = 6\sqrt{3} - 9$

$$\triangle ABD$$
 에서 $\overline{BD}=3$, $\overline{AD}=3\sqrt{3}$ $\overline{AB}=\overline{AC}=6$ 이므로 $\overline{DC}=6-3\sqrt{3}$ $\overline{AD}\times\overline{DC}=\overline{BD}\times\overline{DE}$ 이므로 $3\sqrt{3}(6-3\sqrt{3})=3\overline{DE}$