
1. x > 2 일 때, 다음 중  $\sqrt{(x-2)^2} - \sqrt{(2-x)^2}$  의 값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

**2.**  $7 < \sqrt{10x^2} < 12$  이 성립할 때, 정수 x 의 값을 모두 구하면?

①  $\pm 1$  ②  $\pm 2$  ③  $\pm 3$  ④  $\pm 4$  ⑤  $\pm 5$ 

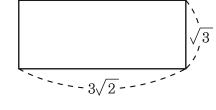
 $oldsymbol{3}$ . 다음은 수직선 위에 정사각형  $oldsymbol{ABCD}$  를 그린 것이다. 점  $oldsymbol{P}$  에 대응하 는 점의 값은 얼마인가?



- ①  $1 \sqrt{2}$  ②  $1 \sqrt{3}$  ③  $2 \sqrt{2}$  $4 \ 2 - \sqrt{3}$   $5 \ 2 - \sqrt{5}$

- 4. 다음 중 대소비교가 옳은 것을 모두 고르면?

  - O 10 12 10
  - ∅ ¬,©⑤ ¬,©,©
  - ① ⑦,ⓒ


5. 다음 중  $\sqrt{3}$  와  $\sqrt{11}$  사이에 있는 무리수는?

①  $\sqrt{3} - 1$  ②  $2\sqrt{3}$  ③  $\sqrt{11} - 3$  ④  $\sqrt{3} + 3$  ⑤  $\frac{\sqrt{3} + \sqrt{11}}{2}$ 

6.  $-\sqrt{3} \times \sqrt{\frac{2}{3}} \times \sqrt{\frac{3}{2}}$  를 간단히 하면?

①  $\sqrt{2}$  ②  $-\sqrt{2}$  ③  $\sqrt{3}$  ④  $-\sqrt{3}$  ⑤  $\sqrt{5}$ 

- 7. 다음 그림과 같은 직사각형의 넓이를  $\sqrt{a}$ 의 꼴로 나타냈을 때, a의 값을 구하여라.



**>** 답: a = \_\_\_\_\_

8.  $2\sqrt{3} \div 3\sqrt{2} \times \sqrt{27}$  을 간단히 하여라.

▶ 답: \_\_\_\_\_

- 일차방정식  $(\sqrt{2}-2)x = (3-\sqrt{2})(3\sqrt{2}+1)$  을 풀면? 9.

- ①  $-1 \frac{13}{2}\sqrt{2}$  ②  $-2 \frac{13}{2}\sqrt{2}$  ③  $-3 \frac{13}{2}\sqrt{2}$ ④  $-4 \frac{13}{2}\sqrt{2}$  ⑤  $-5 \frac{13}{2}\sqrt{2}$

- 10. 다음 그림과 같이 넓이가 각각 2cm², 8cm², 18cm² 인 정사각형 모 양의 타일을 이어 붙였다. 이 때, 이 타일로 이루어진 도형의 둘레의 길이는?
- 8cm<sup>2</sup> 18cm<sup>2</sup>
- ①  $12\sqrt{2} \text{ cm}$ ④  $17\sqrt{2} \text{ cm}$
- ②  $13\sqrt{2}$  cm ③  $18\sqrt{2}$  cm
  - . Pem

 $315\sqrt{2}\,\mathrm{cm}$ 

11. 
$$-\sqrt{8^2}$$
 ÷  $\left(\sqrt{\frac{8}{5}}\right)^2$  을 계산하여라.

▶ 답: \_\_\_\_

**12.** a > 0 일 때, 다음 계산에서 옳은 것을 모두 골라라.

 $\sqrt{9a^2} - \sqrt{16a^2} = 7a$ 

답: \_\_\_\_\_

▶ 답: \_\_\_\_\_

13.  $\sqrt{56x}$  가 자연수가 되기 위한 최소의 자연수 x 는?

① 2 ② 4 ③ 7 ④ 14 ⑤ 28

**14.**  $\sqrt{10+x}$  의 값이 가장 작은 자연수가 되도록 하는 자연수 x 의 값은?

① 2 ② 4 ③ 6 ④ 8 ⑤ 10

**15.** 두 수의 대소관계가 옳지 <u>않은</u> 것을 모두 골라라.

**16.**  $\sqrt{(3-2\sqrt{2})^2} - \sqrt{(2\sqrt{2}-3)^2}$  을 간단히 하면?

 $\textcircled{4} \ 0 \qquad \qquad \textcircled{5} \ -6 + 4\sqrt{2}$ 

①  $6-4\sqrt{2}$  ②  $-4\sqrt{2}$  ③ 6

17. 다음 보기에서 무리수는 모두 몇 개인가?

보기- $\sqrt{0}$ ,  $\sqrt{2} + \sqrt{3}$ , 0.29,  $\sqrt{19.6}$ ,  $\sqrt{8}$ ,  $\sqrt{144}$ 

18. 다음 중 수직선 위에서 -1 과  $\sqrt{3}$  사이에 있는 수에 대한 설명으로 옳은 것은?

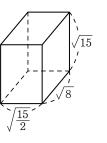
① 자연수가 2 개 있다. ② 정수가 3 개 있다.

- ③ 유리수가 유한개 있다. ④ 무리수는 없다.
- ⑤ 실수는 무수히 많다.

19. 다음 수직선에서  $4\sqrt{3}$  에 대응하는 점이 있는 구간은?

20.  $\frac{\sqrt{28}}{\sqrt{11}}\div\frac{\sqrt{7}}{\sqrt{33}}$  을 간단히 하였더니  $\sqrt{a}$  이었다. 이때 자연수 a 의 값을 구하여라.

**>** 답: a = \_\_\_\_\_


**21.**  $\sqrt{2} = x$ ,  $\sqrt{5} = y$  라고 할 때,  $\sqrt{10}$  을 x, y 를 써서 나타내어라.

**>** 답: √10 = \_\_\_\_\_

**22.**  $-\frac{3}{2\sqrt{3}} = A\sqrt{3}$  일 때, A 의 값으로 옳은 것은?

①  $-\frac{1}{2}$  ② 2 ③ 3 ④  $-\frac{1}{3}$  ⑤  $\frac{3}{2}$ 

23. 다음 그림과 같은 직육면체의 부피를 구하여라.



답: \_\_\_\_\_

(4)  $8\sqrt{6} - 7\sqrt{3}$  (5)  $4\sqrt{6} + 2\sqrt{3}$ 

**24.**  $6\sqrt{6} - 4\sqrt{3} + 2\sqrt{6} - 3\sqrt{3}$  을 간단히 하면?

**25.**  $\sqrt{8} - \frac{1}{\sqrt{18}} + \frac{1}{\sqrt{32}} = k\sqrt{2}$  일 때, k 의 값은?

① 2 ②  $\frac{23}{12}$  ③  $\frac{47}{24}$  ④ 3 ⑤  $\frac{57}{24}$ 

**26.** 다음 식의 값이 유리수가 되도록 하는 유리수 x 의 값을 구하여라.

$$\sqrt{3}(\sqrt{3}-5) + x(2-\sqrt{3})$$

**)** 답: x = \_\_\_\_\_

 $oldsymbol{27}$ . 다음 제곱근표에서  $oldsymbol{\sqrt{34.3}}$ 의 값을 a ,  $oldsymbol{\sqrt{25.4}}$  의 값을 b 라고 할 때, a+b 의 값을 구하여라.

| 수  | 0     | 1     | 2     | 3     | 4     | 5     |
|----|-------|-------|-------|-------|-------|-------|
| 25 | 5.000 | 5.010 | 5.020 | 5.030 | 5.040 | 5.050 |
| 26 | 5.099 | 5.109 | 5.119 | 5.128 | 5.138 | 5.148 |
| 27 | 5.196 | 5.206 | 5.215 | 5.225 | 5.235 | 5.244 |
| 28 | 5.292 | 5.301 | 5.310 | 5.320 | 5.329 | 5.339 |
| 29 | 5.385 | 5.394 | 5.404 | 5.413 | 5.422 | 5.431 |
| 30 | 5.477 | 5.486 | 5.495 | 5.505 | 5.514 | 5.523 |
| 31 | 5.568 | 5.577 | 5.586 | 5.595 | 5.604 | 5.612 |
| 32 | 5.657 | 5.666 | 5.675 | 5.683 | 5.692 | 5.701 |
| 33 | 5.745 | 5.753 | 5.762 | 5.771 | 5.779 | 5.788 |
| 34 | 5.831 | 5.840 | 5.848 | 5.857 | 5.865 | 5.874 |

**)** 답: a+b=\_\_\_\_\_

28. 다음 중 반드시 근호를 사용하여 나타내야만 하는 것은?

①  $\sqrt{0.49}$  ②  $\sqrt{121}$  ③  $\sqrt{1}$  ④  $\sqrt{\frac{1}{16}}$  ⑤  $\sqrt{0.4}$ 

- ①  $-\sqrt{4^2}$  ②  $-(-\sqrt{4})^2$  ③  $-\sqrt{(-4)^2}$  ④  $\sqrt{\sqrt{(-4)^4}}$  ⑤  $-\sqrt{\frac{1}{4}(4)^3}$

**30.** a > 0 일 때, 다음 식을 간단히 하면?

$$\sqrt{(-a)^2 + \sqrt{4a^2} - \sqrt{(-5a)^2}}$$

① -3a ② -2a ③ -a ④ a ⑤ 2a

**31.** -3 < x < 3 일 때,  $2\sqrt{(x-3)^2} - \sqrt{4(x+3)^2}$  을 간단히 하면?

④ 6*x* 

① -4x ② -2x-6 ③ 0

0 ...

**32.**  $\sqrt{180x}$  가 양의 정수가 되도록 하는 가장 작은 두 자리의 자연수 x를 구하여라.

**)** 답: x = \_\_\_\_\_

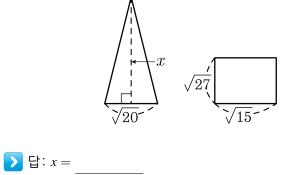
## **33.** 다음 중 옳은 것은?

- 무한소수는 무리수이다.
  유리수는 유한소수이다.
- ③ 순환소수는 유리수이다.
- ④ 유리수가 되는 무리수도 있다.
- ⑤ 근호로 나타내어진 수는 무리수이다.

34. 다음 보기 중 옳은 것을 모두 골라라.

| 보기                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\bigcirc \frac{1}{\sqrt{5}}$ 는 자연수가 아니다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>,</b> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\bigcirc 3\sqrt{4}$ 는 무리수이다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\bigcirc$ $\sqrt{0.01}$ 는 정수가 아닌 유리수이다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| extstyle 	ex |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

답: \_\_\_\_\_답: \_\_\_\_\_


## **35.** 다음 설명 중 옳지 <u>않은</u> 것을 모두 고르면?


- ① 두 유리수  $\frac{1}{5}$  과  $\frac{1}{3}$  사이에는 무수히 많은 유리수가 있다. ② 두 무리수  $\sqrt{5}$  와  $\sqrt{6}$  사이에는 무수히 많은 무리수가 있다.
- ③ √5 에 가장 가까운 유리수는 2 이다.
- ④ 서로 다른 두 유리수의 합은 반드시 유리수이지만, 서로 다른
- 두 무리수의 합 또한 반드시 무리수이다. ⑤ 실수와 수직선 위의 점 사이에는 일대일 대응이 이루어진다.

**36.**  $\sqrt{54}=a\sqrt{6}, \ \sqrt{108}=6\sqrt{b}, \ \sqrt{c}=2\sqrt{3}$  일 때, a+b+c 의 값을 구하여라.

▶ 답: \_\_\_\_\_

**37.** 다음 그림의 삼각형과 직사각형의 넓이가 서로 같을 때, 삼각형의 높이 x의 값을 구하여라.





**38.** x와 y 사이에는  $y-x=\frac{1}{x}$  의 식이 성립한다.  $x=\sqrt{7}$  일 때, y 를 x 로 바르게 표현한 것은?

①  $\frac{3}{2}x$  ②  $\frac{7}{8}x$  ③  $\frac{8}{7}x$  ④ 2x ⑤ 3x

① 
$$24\sqrt{2}$$
 ②  $12\sqrt{2}$  ③  $6\sqrt{2}$  ④  $\frac{5\sqrt{2}}{6}$  ⑤  $\frac{\sqrt{2}}{6}$ 

**40.** 제곱근표에서  $\sqrt{2}=1.414$  ,  $\sqrt{3}=1.732$  일 때,  $\frac{1}{\sqrt{2}}+\sqrt{3}$  의 제곱근의 값을 구하여라.

답: \_\_\_\_\_

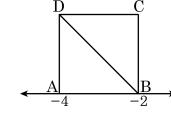
- **41.** 다음 중 옳지 <u>않은</u> 것을 모두 고르면?
  - ①  $\frac{7}{9}$  의 제곱근은  $\pm \frac{\sqrt{7}}{3}$  이다. ② 1.5 의 제곱근은 1 개이다. ③ 제곱근  $\frac{9}{4}$  는  $\frac{3}{2}$  이다.

  - ④ 제곱근 25 는 5 이다.
  - ⑤ 자연수가 아닌 수의 제곱근은 없다.

42. 반지름의 길이의 비가 1:3 인 두 원이 있다. 이 두 원의 넓이의 합이  $40\pi\mathrm{cm}^2$  일 때, 작은 원의 반지름의 길이는 몇 cm 인가?

① 1cm ② 2cm ③ 3cm ④ 4cm ⑤ 5cm

되었다. 어떤 수는?


43. 25 의 음의 제곱근과 어떤 수의 양의 제곱근을 더하였더니 -1 이

① 4 ② 9 ③ 16 ④ 36 ⑤ 49

44.  $\sqrt{960-32a}$  가 정수가 되도록 하는 자연수 a 중에서 가장 큰 값을 M, 가장 작은 값을 m 이라고 할 때, M-2m 의 값은?

① 1 ② 2 ③ 4 ④ 6 ⑤ 8

45. 다음과 같이 수직선 위의 점 A(-4), B(-2)에 대하여 선분 AB를 한 변으로 하는 정사각형 ABCD 가 있다. 점 B를 중심으로 하고, 대각선 BD 를 반지름으로 하는 반원의 넓이를 구하여라.



▶ 답: \_\_\_\_

**>** 답: \_\_\_\_\_

47.  $\sqrt{0.96}$  은  $\sqrt{6}$  의 x 배이다. 이 때, x 의 값은?

①  $\frac{1}{5}$  ②  $\frac{2}{5}$  ③  $\frac{8}{5}$  ④  $\frac{12}{5}$  ⑤  $\frac{16}{5}$ 

**48.** 두 수 a , b에 대하여 기호 \*를  $a*b = \frac{1}{a-b\sqrt{3}}$  (단, a, b는  $a \neq 0$  ,  $b \neq 0$ 인 유리수 )라고 할 때, 다음 중 옳지 <u>않은</u> 것은?

- ①  $1*1 = -\frac{1+\sqrt{3}}{2}$  ②  $2*1 = 2+\sqrt{3}$ ③  $3*2 = -\frac{3+2\sqrt{3}}{3}$  ④  $5*3 = -\frac{5+3\sqrt{3}}{2}$ ⑤  $7*4 = -\frac{7+4\sqrt{3}}{2}$

**49.** 세 실수  $A=\sqrt{20}+\sqrt{80}$  ,  $B=\sqrt{21}+\sqrt{79}$  ,  $C=\sqrt{22}+\sqrt{78}$  의 대소 관계가 바르게 된 것은?

① A < B < C ② A < C < B ③ B < A < C

**50.** 자연수 n 에 대하여  $\sqrt{n}$  의 소수 부분을 f(n) 이라 할 때, f(72) - f(32) 의 값을 구하여라.

답: \_\_\_\_\_