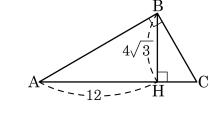
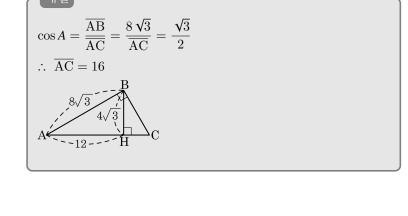

다음 그림과 같은 직각삼각형 ABC 에서 $\cos A = \frac{3}{5}$ 이고, \overline{BC} 가 8 일 때, $\triangle ABC$ 의 넓이는?

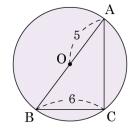

- ① 12
- ②24 ③ 36 ④ 48
- ⑤ 50

$$\cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{3}{5} \text{ 이므로 } \sin A = \frac{4}{5} \text{ 이다.}$$
$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{5} \text{ 이므로 } \overline{AC} = \frac{\overline{BC}}{\sin A} \text{ 이다.}$$

또한,
$$\overline{AC}=\frac{8}{\frac{4}{5}}=10$$
 이다.
$$\overline{5}$$
 피타고라스 정리에 의해 $\overline{AB}=\sqrt{10^2-8^2}=6$ 이므로


따라서
$$\triangle ABC$$
 의 넓이는 $6 \times 8 \times \frac{1}{2} = 24$ 이다.

2. 다음 그림에서 $\cos A=\frac{\sqrt{3}}{2}$ 이고, $\overline{\rm AH}=12,\;\overline{\rm BH}=4\,\sqrt{3}\,\,\rm 일\,\, 때,\,\overline{\rm AC}\,\,\rm 의 \,\, \rm 길이는?}$


① 10 ② 12 ③ 14

⑤ 18

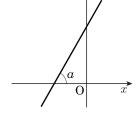
3. 다음 그림에서 θ O 의 반지름의 길이가 5, $\overline{\mathrm{BC}}=6$ 일 때, $\cos\mathrm{A}$ 의 값을 구하면?

 $\angle C$ 는 지름의 원주각 $\angle C = 90^\circ$ $\overline{AC} = \sqrt{10^2 - 6^2} = 8$

$$\therefore \cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{8}{10} = \frac{4}{5}$$

4. 다음 중 옳지 <u>않은</u> 것은?

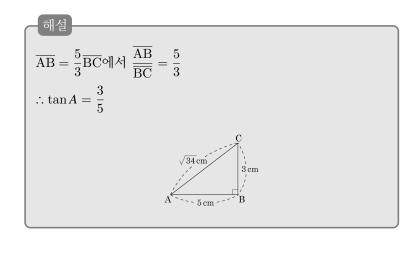
- ① $\tan 45^{\circ} = \frac{1}{\tan 45^{\circ}}$ ② $\sin^2 30^{\circ} + \cos^2 60^{\circ} = \frac{1}{2}$
- $30^{\circ} + \cos 60^{\circ} = \frac{1}{2}$ $3\cos 30^{\circ} + \cos 60^{\circ} = \cos 90^{\circ}$
- $4 \sin 45^{\circ} = \cos 45^{\circ} \times \tan 45^{\circ}$
- $(3) \sin^2 30^\circ + \cos^2 30^\circ = 1$


③ (좌변) = $\frac{\sqrt{3}}{2} + \frac{1}{2}$, (우변) = 0

해설

- 다음 그림과 같이 y = mx + n 의 그래프가 **5.** x 축과 양의 방향으로 이루는 각의 크기를 a라고 할 때, m 값을 나타낸 것은? ② $\cos a - \sin a$
 - \bigcirc $\tan a$

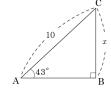
해설


- $\frac{\cos a}{\sin a}$

 $an heta = rac{(높이)}{(밑변)} = rac{(y의 변화량)}{(x의 변화량)} = |(일차함수의 기울기)|$ 따라서 기울기 $m = \tan a$ 이다.

- 6. $\angle B=90^\circ$ 인 직각삼각형 ABC 에 대해서 $\overline{AB}=\frac{5}{3}\overline{BC}$ 일 때, $\tan A$ 의 값을 구하여라.
 - ▶ 답:

ightharpoonup 정답: $rac{3}{5}$



- 7. 다음 중 삼각비의 값의 대소 관계로 옳지 <u>않은</u> 것을 모두 고르면?
- $(2) \sin 85^{\circ} > \sin 25^{\circ}$
- ③ $\sin 40^{\circ} > \cos 20^{\circ}$ ⑤ $\sin 75^{\circ} > \cos 75^{\circ}$
- $4\cos 10^{\circ} < \cos 80^{\circ}$

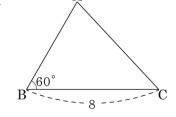
해설 3 0°

- ③ 0° ≤ x < 45° 인 범위에서는, sin x < cos x 이므로 ∴ sin 40° < cos 20°
- ④ $0^{\circ} \le x \le 90^{\circ}$ 인 범위에서는 x 의 값이 증가하면 $\cos x$ 의
- 값은 1 에서 0 까지 감소한다. ∴ cos 10° > cos 80°

8. 다음 그림의 $\triangle ABC$ 에서 삼각비의 표를 보고 x 의 값을 구하면?

x	sin x	cos x	tan x
43°	0.6820	0.7314	0.9325
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6821	1.0724

① 6.82 ② 6.947 ③ 7.071 ④ 7.193 ⑤ 7.314

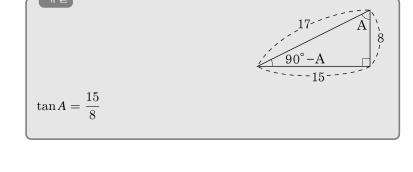

 $\sin 43^\circ = \frac{x}{10}$ ○□로 $x = 10 \times \sin 43^\circ = 10 \times 0.682 = 6.82$ ∴ 6.82

- 다음 그림과 같이 바다를 항해하는 배와 9. 등대 사이의 거리가 21 m 이고, 배에서 등대의 꼭대기를 바라 본 각의 크기가 15°이었다면, 등대의 높이는?

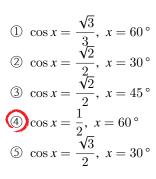
 - ① $\tan 15$ ° m $4 21 \sin 15$ ° m
- ② 21 tan 15 ° m ③ sin 15 ° m
- $\Im \cos 15^{\circ} \mathrm{m}$

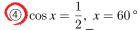
 $\tan 15$ ° = $\frac{x}{21}$ 이므로 $x = 21 \tan 15$ ° m 이다.

10. 다음 그림의 $\triangle ABC$ 에서 $\overline{BC}=8$, $\angle B=60$ °이고 넓이가 $8\sqrt{3}$ 일 때, \overline{AB} 의 길이를 구하여라.

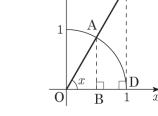

답:▷ 정답: 4

 $\triangle ABC = \frac{1}{2} \times \overline{AB} \times 8 \times \sin 60^{\circ}$ $= 4 \times \overline{AB} \times \frac{\sqrt{3}}{2}$ $= 2\sqrt{3} \times \overline{AB}$ $8\sqrt{3} = 2\sqrt{3} \times \overline{AB}$ 이므로 $\overline{AB} = 4$ 이다.


11. $\sin(90\,^{\circ}-A) = \frac{8}{17}$ 일 때, $\tan A$ 의 값을 구하여라. (단, $(0\,^{\circ} < A < 90\,^{\circ})$


답:

ightharpoonup 정답: $rac{15}{8}$


12. 다음을 참고하여 $\cos x$ 의 값과 x를 구한 것으로 바르게 짝지어진 것은?

$$\cos x = \frac{1}{2}, \ x = 60$$

$$\cos x = \frac{1}{2}, \ x = 30$$

$$\tan x = \frac{\overline{\text{CD}}}{\overline{\text{OD}}} = \sqrt{3}, \cos 60^{\circ} = \frac{1}{2} \qquad \therefore x = 60^{\circ}$$

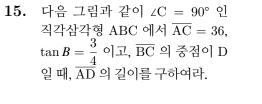
13. $0^{\circ} < x < 90^{\circ}$ 에 대하여 $\cos(2x - 10^{\circ}) = \frac{\sqrt{3}}{2}$ 을 만족하는 x 의 크기는?

① 15° ② 20° ③ 25° ④ 30° ⑤ 35°

 $2x - 10^\circ = 30^\circ$ 이다. $\therefore x = 20^\circ$

14. 삼각비의 표를 보고 다음을 만족하는 $x \times y \div z - 5$ 의 값은?

각도	sin	cos	tan
10°	0.1736	0.9848	0.1763
20°	0.3420	0.9397	0.3640
35°	0.5736	0.8192	0.7002
45°	0.7071	0.7071	1.0000
50°	0.7660	0.6428	1.1918
70°	0.9397	0.3420	2.7475
89°	0.9998	0.0175	57.2900


 $\cos y = 0.9397$ $\tan z = 2.7475$ ① 1 ② 2 ③ 3 ④ 5 ⑤ 6

əl kl

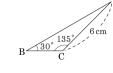
 $\therefore x \times y \div z - 5 = 35 \times 20 \div 70 - 5 = 5$

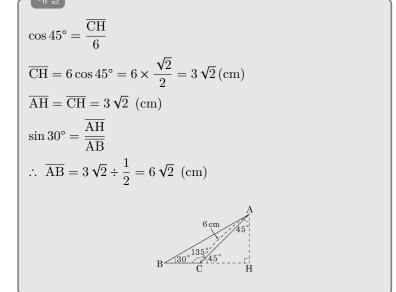
x = 35°, y = 20°, z = 70°

 $\sin x = 0.5736$

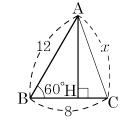
① $5\sqrt{10}$ ② $10\sqrt{11}$

③ $6\sqrt{12}$


 $4 5\sqrt{13}$


△ABC 에서 $\tan B = \frac{36}{\overline{BC}} = \frac{3}{4} \qquad \therefore \overline{BC} = 48$ $\therefore \overline{CD} = \frac{1}{2}\overline{BC} = 24$

따라서 △ADC 에서 $\overline{AD} = \sqrt{36^2 + 24^2} = \sqrt{1872} = 12\sqrt{13}$ 이다.


16. 다음 그림의 $\triangle ABC$ 에서 $\angle ACB=135^\circ, \ \overline{AC}=6 \mathrm{cm}$ 이다. \overline{AB} 의 길이를 구하면?

- $\textcircled{1} \ 6\,\mathrm{cm}$ 47 cm
- $\Im 7\sqrt{2} \,\mathrm{cm}$

17. 다음 그림에서 x 의 길이를 구하면?

 $4\sqrt{7}$

⑤ $4\sqrt{11}$

$$\overline{AH} = 12\sin 60^\circ = 12 \times \frac{\sqrt{3}}{2} = 6\sqrt{3}$$

$$\overline{BH} = 12\cos 60^\circ = 12 \times \frac{1}{2} = 6$$

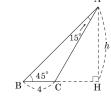
해설

① $4\sqrt{2}$ ② $4\sqrt{3}$ ③ $4\sqrt{5}$

$$\overline{CH} = 8 - 6 = 2$$

$$x = \sqrt{(6\sqrt{3})^2 + 2^2} = \sqrt{108 + 4} = \sqrt{112} = 4\sqrt{7}$$

18. 다음 그림과 같은 $\triangle ABC$ 에서 높이 \overline{AH} 의 길이를 구하면?


All 기술이를 기어진:

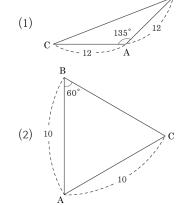
① $\sqrt{3}$ ② $2\sqrt{3}$ ③ $3\sqrt{3}$ ④ 2 ⑤ 3

 $\triangle ABC$ 에서 \overline{AH} 를 구하기 위해서 $\triangle ABH$ 에서 $\sin 60^\circ = \frac{\overline{AH}}{\overline{AB}} = \frac{\overline{AH}}{4} = \frac{\sqrt{3}}{2}, \ \overline{AH} = 2\sqrt{3}$ 이다.

 $\frac{1}{4} = \frac{1}{2}, \text{ AH} = 2\sqrt{3} \text{ old.}$

19. 다음 그림과 같은 삼각형 ABC 에서 h 의 값은?

(4)
$$2(3+\sqrt{3})$$


①
$$2(3 + \sqrt{3})$$
 ② $2(3 - \sqrt{3})$ ③ $3(3 + \sqrt{3})$ ④ $2(3 + \sqrt{2})$ ⑤ $3(3 + \sqrt{2})$

$$4 2 (3 + \mathbf{V}^2)$$

 $\triangle ABH$ 는 직각이등변삼각형이므로 $\overline{AH}=\overline{BH}=h$ 이다. $\angle ACH=45^\circ+15^\circ=60^\circ$ 이고, $\overline{\mathrm{AH}}:\overline{\mathrm{CH}}=\sqrt{3}:1=h:\overline{\mathrm{CH}},$ $\overline{\mathrm{CH}}=\frac{\sqrt{3}}{3}h$ 이다.

파라서
$$4 + \frac{\sqrt{3}}{3}h = h$$
, $(3 - \sqrt{3})h = 12$, $h = 2(3 + \sqrt{3})$ 이다.

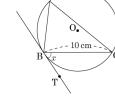
20. 다음 두 삼각형의 넓이로 바르게 짝지어진 것은?.

- $3(1)36\sqrt{2}, (2)25\sqrt{3}$
- ① $(1)34\sqrt{2}, (2)26\sqrt{3}$ ② $(1)35\sqrt{2}, (2)26\sqrt{3}$ ③ $(1)36\sqrt{2}, (2)25\sqrt{3}$ ④ $(1)36\sqrt{2}, (2)24\sqrt{3}$
- ⑤ $(1)37\sqrt{2}, (2)26\sqrt{3}$

(1)
$$\frac{1}{2} \times 12 \times 12 \times \sin(180^{\circ} - 135^{\circ})$$

= $\frac{1}{2} \times 12 \times 12 \times \sin 45^{\circ}$
= $\frac{1}{2} \times 12 \times 12 \times \frac{\sqrt{2}}{2}$
= $36\sqrt{2}$

(2)
$$\frac{1}{2} \times 10 \times 10 \times \sin 60^{\circ}$$
$$= \frac{1}{2} \times 10 \times 10 \times \frac{\sqrt{3}}{2}$$
$$= 25\sqrt{3}$$

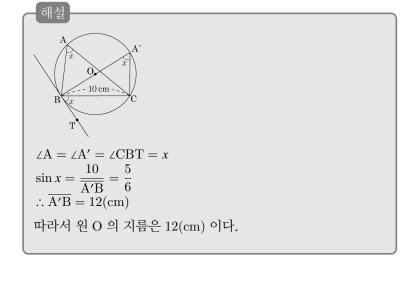

21. 한 변의 길이가 $4\sqrt{3}$ 인 마름모의 넓이가 24 일 때, $0^{\circ} < \angle A < 90^{\circ}$ 인 마름모의 한 내각 ∠A 의 크기를 구하여라. ▶ 답:

▷ 정답: 30°

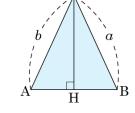
마름모는 네 변의 길이가 모두 같으므로

 $\Box {\rm ABCD}$ 의 넓이는 $4\sqrt{3} \times 4\sqrt{3} \times \sin {\rm A} = 24$ 이다. $\sin A = \frac{1}{2}$ 이므로 A = 30° 이다.

22. 다음 그림에서 $\triangle ABC$ 는 원 O 에 내접하고 \overrightarrow{BT} 는 원 O 의 접선이다. $\angle CBT = x$ 라 하면 $\sin x = \frac{5}{6}$, $\overrightarrow{BC} = 10 \mathrm{cm}$ 일 때, 원 O 의 지름의 길이를 구하여라.

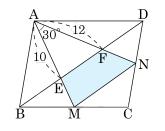


 $\underline{\mathrm{cm}}$


> 정답: 12<u>cm</u>

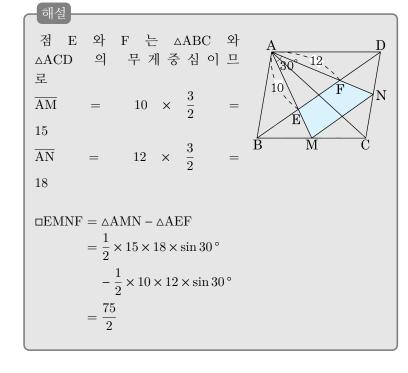
он. 12<u>сш</u>

답:

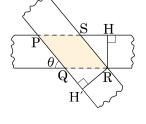

- **23.** 다음 그림의 $\triangle ABC$ 에서 $\overline{AC}=b$, $\overline{BC}=a$, $\overline{CH}\bot\overline{AB}$ 일 때, $\frac{\sin A}{\sin B}$ 의 값은?
 - ① a^2b^2 ② a+b ③ ab ④ $\frac{b}{a}$

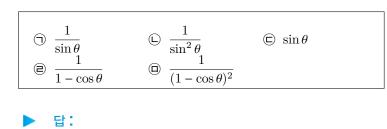
$$\sin A = \frac{\overline{CH}}{b}, \quad \sin B = \frac{\overline{CH}}{a}$$

따라서 $\frac{\sin A}{\sin B} = \frac{a}{b}$ 이다.


따라서
$$\frac{\sin A}{\sin B} = \frac{a}{b}$$
 이다.

24. 다음 그림과 같이 평행사변형 ABCD 의 두 변 BC, CD 의 중점을 각각 M, N 이라 하고 AM, AN 과 대각선 BD 와의 교점을 E, F 라 하자. AE = 10, AF = 12, ∠EAF = 30°일 때, □EMNF의 넓이를 구하여라.




답:

ightharpoonup 정답: $rac{75}{2}$

25. 다음 그림과 같이 폭이 1로 일정한 두 종이 테이프가 θ 의 각을 이루며 겹쳐 있을 때, □PQRS의 넓이를 구하여라.

▷ 정답: ③

해설

점 R 에서 \overrightarrow{PS} , \overrightarrow{PQ} 에 내린 수선의 발을 각각 H, H'이라 하면 $\triangle QRH'$ 에서 $\angle RQH'=\theta$ 이므로

 $\overline{\mathrm{QR}} = \frac{\overline{\mathrm{RH'}}}{\sin \theta} = \frac{1}{\sin \theta}$ 이다. 또, $\triangle \mathrm{SRH}$ 에서 $\angle \mathrm{RSH} = \theta$ 이므로 $\overline{\mathrm{SR}} = \frac{\overline{\mathrm{RH}}}{\sin \theta} = \frac{1}{\sin \theta}$

$$\angle RSH = \theta$$
이므로 $\overline{SR} = \frac{\overline{RH}}{\sin \theta} = \frac{1}{\sin \theta}$

$$\therefore \Box PQRS = \overline{QR} \times \overline{SR} \times \sin \theta$$
$$= \frac{1}{\sin \theta} \times \frac{1}{\sin \theta} \times \sin \theta = \frac{1}{\sin \theta}$$