
1. 평행사변형ABCD 에서 $\angle BAC = 70^\circ$, $\angle BDC = 45^\circ$ 일 때, $\angle OBC + \angle OCB$ 의 크기는?

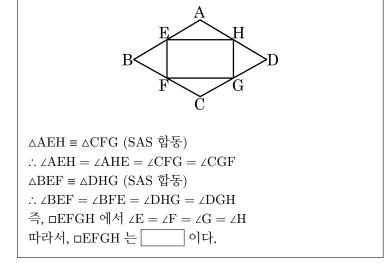
① 70°

해설

(2)6

③ 60°

④ 50°

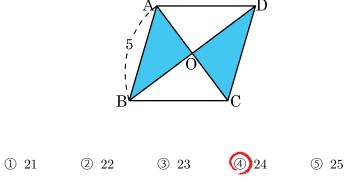

⑤ 45°

∠ABO = 45° (엇각)

∠OBC + ∠OCB 는 △OBC 외각

 $\therefore \angle AOB = 65^{\circ}$

2. 다음은 마름모 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, □EFGH 는 입을 증명하는 과정이다. 안에 들어갈 알맞은 것은?


 ① 등변사다리꼴
 ② 직사각형
 ③ 마름모

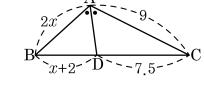
 ④ 정사각형
 ⑤ 평행사변형

해설

네 내각의 크기가 모두 같은 사각형은 직사각형이다.

 ${f 3.}$ 다음 평행사변형 ${
m ABCD}$ 에서 두 대각선의 길이의 합이 14일 때, 어두 운 부분의 둘레의 길이는?

 $\overline{\mathrm{AO}} + \overline{\mathrm{CO}} = \overline{\mathrm{AC}}, \ \overline{\mathrm{BO}} + \overline{\mathrm{OD}} = \overline{\mathrm{BD}}$ 이므로


해설

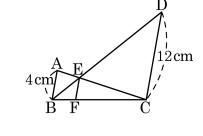
어두운 부분의 둘레는 $2\overline{AB} + \overline{AC} + \overline{BD} = 10 + 14 = 24$ 이다.

- 4. 다음 중 두 대각선의 길이가 서로 같고, 서로 다른 것을 이등분하는 사각형을 모두 고르면?
 - ① 등변사다리꼴
 ② 평행사변형
 ③ 마름모

 ④ 직사각형
 ⑤ 정사각형

직사각형은 두 대각선의 길이가 같고 서로 다른 것을 이등분한다. 정사각형은 직사각형의 성질을 가지므로 위의 성질도 가진다. **5.** 다음 그림의 \triangle ABC 에서 \overline{AD} 는 \angle A 의 이등분선이다. x 의 값을 구하여라.

▶ 답: ▷ 정답: 3


 $\overline{\mathrm{AB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BD}}:\overline{\mathrm{CD}}$

해설

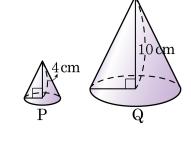
2x:9 = (x+2):7.515x = 9x + 18

6x = 18, x = 3

6. 다음 그림에서 \overline{EF} 의 길이는?

⑤ 8cm

① 3cm ② 4cm ③ 5cm ④ 6cm


 $\overline{\text{EF}} = \frac{4 \times 12}{4 + 12} = 3 \text{(cm)}$

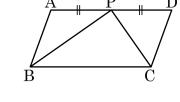
- 7. 다음 그림에서 점 G 가 직각삼각형 ABC의 무게중심일 때, $\overline{\mathrm{AG}}$ 의 길이는?
 - ① $\frac{5}{3}$ cm ② $\frac{7}{3}$ cm ③ $\frac{10}{3}$ cm ④ 2 cm
- ⑤ 3 cm

직각삼각형의 빗변의 중점은 외심이므로 $\overline{AD}=\overline{BD}=\overline{DC}$ $\overline{AD}=\frac{1}{2}\overline{BC}=5(\,\mathrm{cm})$, $\overline{AG}=\frac{2}{3}\times 5=\frac{10}{3}(\,\mathrm{cm})$

$$\frac{2}{AG} - \frac{2}{2} \times 5 - \frac{10}{6}$$

8. 다음 두 원뿔은 닮은 도형이고, 작은 원뿔의 옆넓이가 $12 cm^2$ 일 때, 큰 원뿔의 옆넓이는?

 475cm^2


 $\textcircled{1} \ 50 \mathrm{cm}^2$

- \bigcirc 55cm² $\odot 80 \text{cm}^2$
- 360cm^2

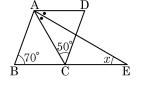
닮음비가 2:5이므로, 넓이의 비는 $2^2:5^2=4:25$

4:25=12:x $\therefore x = 75(\text{ cm}^2)$

9. 다음 그림과 같은 평행사변형 ABCD 에서 점 P 는 $\overline{\mathrm{AD}}$ 의 중점이다. $\overline{\mathrm{BC}}=2\overline{\mathrm{AB}}$ 일 때, $\angle\mathrm{BPC}$ 의 크기를 구하여라.

답:

> 정답: ∠BPC = 90_°


 $\overline{\mathrm{AD}} = 2\overline{\mathrm{AB}}$ 이므로

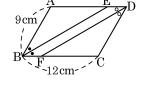
해설

 $\overline{AB} = \overline{AP} = \overline{PD}$ $\angle ABP = \angle APB, \angle DPC = \angle DCP$ ∠A + ∠D = 180 ° 이므로 $2\angle \text{APB} + 2\angle \text{DPC} = 180\,^{\circ}$ $\therefore \angle APB + \angle DPC = 90^{\circ}$ $\angle BPC = 180^{\circ} - (\angle APB + \angle DPC)$

 $= 180 \,^{\circ} - 90 \,^{\circ} = 90 \,^{\circ}$

10. 다음 그림과 같은 평행사변형 ABCD 에서 ∠DAC 의 이등분선과 BC 의 연장선과의 교점을 E라 한다. ∠B = 70°, ∠ACD = 50°일 때, ∠x 의 크기를 구하여라.

▷ 정답: 30°


▶ 답:

 $\angle B = \angle D = 70$ ° 이므로 $\angle CAD = 60$ ° 이코 $\angle EAC = \angle AEC =$

30°이다. 따라서 ∠x = 30°이다.

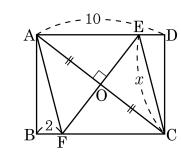
11. 다음 그림에서 □ABCD 는 평행사변형이다.

AB = 9 cm, BC = 12 cm 일 때, □EBFD 의 되어는 □ABCD 의 넓이의 몇 배인지 구하여라.

답:

정답: ¹/₄ <u>배</u>

4


해설

 ΔABE 와 ΔCFD 는 이등변삼각형이므로 $\overline{AE}=\overline{AB}=9~(cm),~\overline{CF}=\overline{CD}=9~(cm)$

 \therefore $\overline{\text{ED}} = \overline{\text{BF}} = 12 - 9 = 3 \text{ (cm)}$ □ABCD 와 □EBFD 의 높이는 같으므로 □EBFD 의 넓이는 □ABCD 의 넓이의 $\frac{3}{12} = \frac{1}{4}$ 이다.

배

12. 직사각형 ABCD 에서 x 의 길이를 구하여라.

① 4 ② 5 ③ 6 ④ 7

 $\triangle ABF \equiv \triangle CDE(RHS 합동) 이므로$

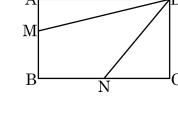
 $\overline{\mathrm{BF}}=\overline{\mathrm{ED}}$ 따라서 $\overline{AE} = \overline{CE} = 10 - 2 = 8$

 $\therefore x = 8$

13. 평행사변형 ABCD 가 다음 조건을 만족할 때, 어떤 사각형이 되는지 말하여라.

조건1: ∠A = 90°

조건 $2 : \overline{AC}$ 와 \overline{BD} 는 직교한다.

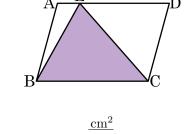

답:

➢ 정답: 정사각형

조건 1에서 평행사변형의 한 각이 90° 이므로 다른 각도 모두

해설

90° 가 된다. 이 경우 직사각형이 된다. 조건 2 에서 두 대각선이 직교하므로 마름모가 된다. 이 조건을 모두 만족하는 도형은 정사각형이다. 14. 다음 그림과 같은 직사각형 ABCD 에서 점 N 은 \overline{BC} 의 중점이고, $\overline{AM}:\overline{MB}=2:3$ 이다. $\Box ABCD=60 {
m cm}^2$ 일 때, $\Box MBND$ 의 넓이를 구하여라.



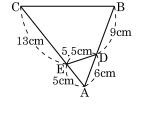
 ▶ 답:
 cm²

 ▷ 정답:
 33 cm²

 $\Delta DMB = \frac{3}{5} \triangle ABD = \frac{3}{10} \square ABCD$ $\Delta DBN = \frac{1}{2} \triangle DBC = \frac{1}{4} \square ABCD$ $\square MBND = \triangle DMB + \triangle DBN$ $= \frac{11}{20} \square ABCD$ $= \frac{11}{20} \times 60 = 33(\text{cm}^2)$

15. 다음 그림의 평행사변형 ABCD 의 \overline{AE} : $\overline{ED}=1$: 4 이고, $\triangle ABE=4cm^2$ 일 때, $\triangle EBC$ 의 넓이를 구하여라.

 ▷ 정답:
 20 cm²


▶ 답:

해설

 ΔABE , ΔECD , ΔEBC 의 높이는 같다. $\overline{AE} + \overline{ED} = \overline{BC}$ 이므로 $\Delta ABE + \Delta ECD = \Delta EBC$.

1: $4 = 4 \text{cm}^2$: $\triangle ECD$, $\therefore \triangle ECD = 16 \text{cm}^2$ $\therefore \triangle EBC = \triangle ABE + \triangle ECD = 4 + 16 = 20(\text{cm}^2)$

16. 다음 그림을 참고하여 \overline{BC} 의 길이를 구하여 라.

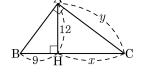
▷ 정답: 16.5<u>cm</u>

▶ 답:

 $\overline{AD} : \overline{AC} = 6 : 18 = 1 : 3$

해설

 $\overline{AE} : \overline{AB} = 5 : 15 = 1 : 3$ $\overline{AD} : \overline{AC} = \overline{AE} : \overline{AB} = 0.5$


 $\overline{AD}: \overline{AC} = \overline{AE}: \overline{AB}$ 이고 $\angle A$ 가 공통이므로 $\triangle ABC \bigcirc \triangle AED$

(SAS 닮음) ∴ 1:3=5.5: BC

 $\underline{\mathrm{cm}}$

.. 1.3 = 5.5 . BC 따라서 $\overline{BC} = 16.5 \, \mathrm{cm}$ 이다.

17. 다음 직각삼각형에서 x, y의 값을 차례대로 구하여라.

▶ 답: ▶ 답:

➢ 정답: x = 16 ▷ 정답: y = 20

 $\overline{\mathrm{AH}}^2 = \overline{\mathrm{BH}} \times \overline{\mathrm{CH}}$

해설

144 = 9x $\frac{\therefore \ x = 16}{\overline{AC}^2 = \overline{CH} \times \overline{CB}}$

 $y^2 = 16 \times 25 = 400$ ∴ y>0 이므로 y = 20

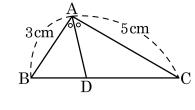
18. 다음 그림과 같은 직사각형 ABCD 를 접었을 때, $\overline{AB'}$ 의 길이를 구하여라.

10cm 18cm

 $\underline{\mathrm{cm}}$

정답: 6 cm

∠EB'C = ∠B = 90° △AEB' ∽ △DB'C (AA 닮음)


▶ 답:

 $\overline{AB'} = x$ 라 하면 $\overline{EB'} : \overline{B'C} = \overline{AB'} : \overline{DC}$

10:30=x:18

x = 6(cm)

19. 다음 그림에서 $\overline{\rm AD}$ 는 $\angle {\rm A}$ 의 이등분선이다. $\triangle {\rm ABC}$ 의 넓이가 $48{
m cm}^2$ 일 때, $\triangle {\rm ABD}$ 의 넓이는?

- ① 9cm^2 ④ 32cm^2
- 2 18cm^2 36cm^2
- $3 27 \text{cm}^2$

 $\overline{
m AD}$ 는 $\angle
m A$ 의 이등분선이므로 $\overline{
m AB}$: $\overline{
m AC} = \overline{
m BD}$: $\overline{
m DC} = 3:5$

해설

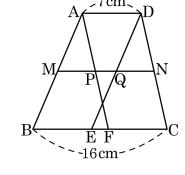
 $\triangle ABD$ 와 $\triangle ADC$ 에서 높이는 같고, 밑변이 3:5 이므로 $\triangle ABD:$ $\triangle ADC = 3:5$ 이다. $\triangle ABD = \frac{3}{8} \triangle ABC = \frac{3}{8} \times 48 = 18 (cm^2)$

8 8 `

 ${f 20}$. 다음 그림과 같이 ΔABC 에서 $\angle A$ 의 외각의 이등분선과 \overline{BC} 의 연장 선과의 교점을 D 라 할 때, $\triangle ABC$: $\triangle ACD$ 는?

① 8:5 ② 5:8

33:5

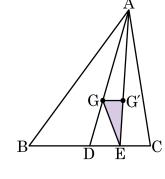

4 5:3
5 8:3

 $\overline{\mathrm{AB}}: \ \overline{\mathrm{AC}} = \overline{\mathrm{BD}}: \ \overline{\mathrm{CD}}$ 이므로 $8: \ 5 = (6+x): \ x$ 3x = 30

 $\therefore x = 10$

 $\triangle ABC$, $\triangle ACD$ 는 높이가 같으므로 밑변의 비가 넓이의 비가 된다. 따라서 밑변의 비는 6:10 이므로 넓이의 비는 3:5 이다.

21. 다음 사다리꼴 ABCD에서 점 M, N은 각각 \overline{AB} , \overline{CD} 의 중점이고 $\overline{AB}//\overline{DE}$, $\overline{AF}//\overline{DC}$ 이다. $\overline{AD}=7\mathrm{cm}$, $\overline{BC}=16\mathrm{cm}$ 일 때, \overline{PQ} 의 길이를 바르게 구한 것은?



- ① 1cm ④ 2.5cm
- ② 1.5cm ③ 3cm
- ③ 2cm

 $\overline{MN} = \frac{7+16}{2} = 11.5$ $\overline{MQ} = \overline{PN} = \overline{AD} = 7(cm)$ $\overline{PQ} = 7+7-11.5 = 2.5(cm)$

1 & - 1 + 1 11.0 - 2.5(1

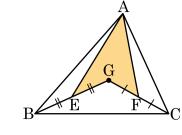
22. 다음 그림에서 점 G, G' 는 각각 $\triangle ABC$, $\triangle ADC$ 의 무게중심이다. $\triangle GEG' = 6 cm^2$ 일 때, $\triangle ABC$ 의 넓이를 바르게 구한 것은?

 $4 112 \text{cm}^2$

 $\textcircled{1} \ 106 \mathrm{cm}^2$

- 20108cm^2 114cm^2

 $\Im 110 \text{cm}^2$


 $\triangle AGE = 3\triangle GG'E = 18(cm^2)$

해설

 $\triangle ADE = \frac{3}{2} \triangle AGE = 27 (cm^2)$

 $\triangle ABC = 4\triangle ADE = 108(cm^2)$

23. 다음 그림에서 $\triangle ABC$ 의 무게중심을 G, \overline{GB} , \overline{GC} 의 중점을 각각 E, F라 하고 $\triangle ABC$ 의 넓이가 $24cm^2$ 일 때, 사각형 AEGF의 넓이를 구하면?

 $48 \mathrm{cm}^2$

- \bigcirc 6cm²
- $3 \text{ } 9\text{cm}^2$

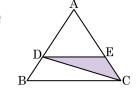
 $2 10 cm^2$

G가 무게중심이므로

 $\triangle ABG = \triangle GBC = \triangle AGC = \frac{24}{3} = 8(cm^2)$

$$\overline{BE} = \overline{EG}$$
 이므로 $\triangle ABE = \triangle AEG = 4(cm^2)$

 $\overline{\text{GF}} = \overline{\text{FC}}$ 이므로 $\triangle \text{AGF} = \triangle \text{AFC} = 4(\text{cm}^2)$ $\therefore \Box \text{AEGF} = \triangle \text{AEG} + \triangle \text{AGF} = 8(\text{cm}^2)$

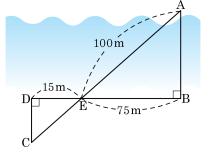

24. 다음 그림에서 AD : DB =2 : 1 이다. DE // BC , ΔDCE = $50\,\mathrm{cm^2}$ 일 때, ΔABC 의 넓이는?

1 th 1 L ·

⑤ 300 cm²

© 000 cm

_____ ΔADE, ΔABC 의 닮음비는 2 : 3 이므로 넓이의 비는 4 : 9 이다.


 $\overline{\mathrm{DE}}:\overline{\mathrm{BC}}=2:3$ 이므로 $\Delta\mathrm{DCE}=\frac{2}{5}\Box\mathrm{DBCE}=50\,\big(\,\mathrm{cm}^2\big)$

 $\therefore \Box DBCE = 50 \times \frac{5}{2} = 125 \text{ (cm}^2\text{)}$

 $4: (9-4) = \triangle ADE: 125$ $\triangle ADE = 100 (cm^2)$

 $\therefore \triangle ABC = 100 + 125 = 225 \text{ (cm}^2\text{)}$

25. 다음 그림은 강의 양쪽에 있는 두 지점 A, C사이의 거리를 알 아보기 위하여 측정한 것이다. 이때 두 지점 A, C사이의 거리는?

① 20 m ④ 140 m ② 80 m ⑤ 150 m ③120 m

 $\triangle ABE$ \hookrightarrow $\triangle CDE$ 이므로 $\overline{AE}:\overline{CE}=\overline{BE}:\overline{DE},\ 100:\overline{CE}=75:$ 15

∴ $\overline{\text{CE}} = 20 \text{(m)}$ ∴ $\overline{\text{AC}} = 120 \, \text{m}$ 이다.