
1. 수열 1, -2, 3, -4, 5, ··· 의 11 번째 항은? $\bigcirc 1$ -13 $\bigcirc 2$ -10 $\bigcirc 3$ 11 $\bigcirc 4$ -11 $\bigcirc 5$ 13 **2.** 등차수열 $\{a_n\}$ 에 대하여 $a_5 + a_6 = \sqrt{4 + 2\sqrt{3}}$, $a_6 + a_7 = \sqrt{4 - 2\sqrt{3}}$ 일 때, a_6 의 값은?

①
$$-\sqrt{3}$$
 ② $-\frac{\sqrt{3}}{2}$ ③ 0 ④ $\frac{\sqrt{3}}{2}$ ⑤ $\sqrt{3}$

①
$$\frac{1}{6}$$
 ② $\frac{1}{3}$ ③ $\frac{1}{2}$ ④ $\frac{2}{3}$ ⑤ $\frac{5}{6}$

3. 수열 $a, \frac{1}{3}, \frac{1}{2}, b, \dots$ 가 등차수열을 이룰 때, a + b의 값은?

첫째항이 3, 공차가 4, 항의 수가 10인 등차수열의 합 S_{10} 을 구하면?

① 150 ② 170 ③ 190 ④ 210 ⑤ 230

6. 수열 $\{a_n\}$ 의 첫째항부터 제 n 항까지의 합 S_n 이 $S_n = n^2 + 2n - 1$ 일 때, a_{10} 의 값을 구하여라.

🔰 답:

세 + x - 4, x, x + 8이 이 순서로 등비수열을 이룰 때, 실수 x의 값을 구하여라.

▶ 답:

8.
$$\sum_{k=3}^{10} k(k+2)$$
의 값은?

① 460 ② 468 ③ 478 ④ 480 ⑤ 484

9. 수열
$$\frac{1}{1+\sqrt{2}}$$
, $\frac{1}{\sqrt{2}+\sqrt{3}}$, $\frac{1}{\sqrt{3}+\sqrt{4}}$, ... 의 제 15 항까지의 합은?

① $\sqrt{14} - 1$ ② $\sqrt{15} - 1$ ③ 3

 $4 \sqrt{15} + 1$ 5 5

- ① -3은 -27의 세제곱근이다.
- ② 81의 네제곱근은 3, -3, 3*i*, -3*i*이다.
- $(3) \sqrt[4]{81} = -3$
- - (4) $\sqrt[4]{-16} = -2$

 $\sqrt[3]{-64} = -4$

①
$$(-100)^0$$

$$3\frac{3^3 \div 3^2}{3}$$

(2) $a^2 \times a \div a^3$

12. $a = 4^3$ 일 때, 8^9 을 a 에 관한 식으로 나타내면? ② $a^{\frac{5}{2}}$ ③ a^3 (4) $a^{\frac{7}{2}}$ (5) $a^{\frac{9}{2}}$

③ $\log_2 3 \log_3 5 \log_5 16$ ④ $\log_{\frac{1}{2}} \frac{1}{16}$

 $\log_{\frac{1}{2}} 81$

구하여라. > 답:

15. $\log 3.14 = 0.4969$ 일 때, $\log 3140^{10}$ 의 정수 부분과 소수 부분을 차례로

- **16.** 어떤 등차수열의 첫째항부터 10까지의 합이 100이고, 11 항부터 20 항까지의 합이 300일 때 21 항부터 30 항까지의 합을 구하여라.
 - ▶ 답:

17.
$$x_i \in \{0, 1, 2\}$$
이고, $\sum_{i=1}^n x_i = 20$, $\sum_{i=1}^n x_i^2 = 34$ 일 때, $\sum_{i=1}^n x_i^3$ 의 값은?

4 98

3 86

- **18.** 수열 1, 5, 11, 19, 29, \cdots 의 일반항 a_n 은?
 - ① $n^2 + n + 1$

 $4 n^2 - n + 1$

②
$$n^2 + n - 1$$
 ③

(5) $n^2 - n - 1$

 $3 n^2 + n - 2$

19. 수열 1, 1+2, $1+2+2^2$, $1+2+2^2+2^3$, · · · 의 첫째항부터 제 n 항까지의 합은?

① $2^n - n$ ② $2^{n+1} - 1$ ③ $2^{n+1} - n$

 $(4) 2^{n+1} - n - 1$

(5) $2^{n+1} - n - 2$

- **20.** $a_1 = 1$, $a_{n+1} = a_n + 2^n (n = 1, 2, 3, \cdots)$ 으로 정의된 수열 $\{a_n\}$ 에 대하여 일반항 a_n 은?
 - ① 2^{n-1} ② $2^{n-1} + n 1$ ③ $2^n 1$

 $\bigcirc 2^{n+1} - 3$

(4) $2^n + n - 2$

21. 높이가 h인 탑을 쌓으려고 한다. 첫 번째 날에는 탑 높이의 절반을 쌓고, 두 번째 날에는 전날 쌓은 높이의 절반을 쌓는다. 이와 같은

때, $\frac{a}{h}$ 의 값은?

방법으로 10일 동안 탑을 쌓았더니 탑의 높이가 $a \cdot \left(\frac{3}{2}\right)^{10}$ 이 되었을

① $\frac{1}{4}$ ② $\frac{1}{3}$ ③ $\frac{1}{2}$ ④ $\frac{3}{4}$ ⑤ $\frac{3}{2}$

22. 다음은 모든 자연수 n에 대하여 $1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1) \cdot 2^n = (2n)(2n-1) \cdots (n+2)(n+1) \cdots$

이 성립함을 수학적 귀납법으로 증명한 것이다.

(i) n = 1일 때, (좌변)= (우변)=2 (ii) n = k일 때 \bigcirc 이 성립한다고 가정하면 $1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2k-1) \cdot 2^k$ $=(2k)(2k-1)\cdots(k+2)(k+1)\cdots$ ©의 양변에 (가) 를 곱하면 $1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2k-1) \cdot \boxed{(나)}$ $= (2k)(2k-1)\cdots(k+2)(k+1)\cdot |(7)|$ $= (2k+2)(2k+1)(2k)\cdots(k+2)$ 따라서 n = k + 1일 때도 \bigcirc 이 성립한다. (i),(ii)에 의하여 모든 자연수 n에 대하여 \bigcirc 이 성립한다. 위의 증명 과정에서 (r),(r)에 들어갈 식을 차례로 f(k), g(k)라 할

1

때, $\frac{g(10)}{f(10)}$ 의 값은?

② $\frac{1}{512}$ ③ 512 ④ 1024 ⑤ 2048

- **23.** $\log_{1-x}(-x^2-2x+15)$ 의 값이 정의되도록 하는 모든 정수 x의 값의 합은?
 - ① -15 ② -10 ③ -6 ④ 2 ⑤ 4

24.
$$x = \sqrt{7 + \sqrt{33}}$$
, $y = \sqrt{7 - \sqrt{33}}$ 일 때, $\log_2 x + \log_2 y$ 의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

log₁₀ 2 = 0.3010, log₁₀ 3 = 0.4771을 이용하여 log₁₀ 1.5의 값을 계산 하면?

① 0.0880 ② 0.0885 ③ 0.1660

 $\bigcirc 0.1777$

(4) 0.1761