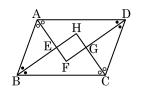
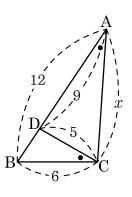
평행사변형 ABCD 에서 ∠A, ∠B, ∠C, ∠D 의 이등분선을 그어 그 교점을 각각 E, F, G, H 라 하면 ∠HEF 의 크기는?



③ 80°

 $\angle A + \angle B = 180^{\circ}$ $\angle \text{HEF} = \frac{1}{2} \times (\angle A + \angle B) = 90^{\circ}$ **2.** 다음 그림에서 x의 값을 구하여라.



▷ 정답: 10

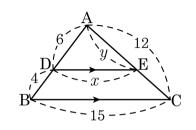
해설

 $\triangle ABC$ 와 $\triangle CBD$ 에서 $\angle B$ 는 공통, $\angle A=\angle BCD$ 이므로 $\triangle ABC$

 \triangle \triangle CBD (AA 닮음) 이다. $\overline{AB} : \overline{CB} = \overline{AC} : \overline{CD}$

12:6=x:5이므로 x=10이다.

3. 다음 그림에서 x + y의 값은?

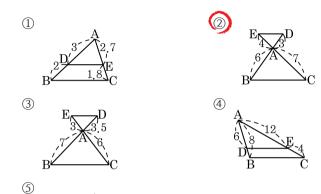


① 13.2 ② 15.5 ③ 16 ④ 16.2 ⑤ 16.8

$$6: 10 = x: 15$$
 $\therefore x = 9$
 $6: 10 = y: 12$ $\therefore y = 7.2$

$$\therefore x + y = 16.2$$

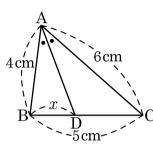
4. 다음 그림에서 $\overline{BC}//\overline{DE}$ 가 평행하지 않은 것은?



해설

- ② $\overline{BC}//\overline{DE}$ 라면, $\overline{AE}:\overline{AC}=\overline{AD}:\overline{AB}$ 이다.
- $4:7 \neq 3:6$ 이므로 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 이 아니다.

5. 다음 그림과 같은 $\angle ABC$ 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라 할 때, $\overline{AB}=4\mathrm{cm}$, $\overline{BC}=5\mathrm{cm}$, $\overline{CA}=6\mathrm{cm}$ 라 한다. 이 때, x 의 길이는?



2cm

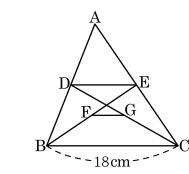
③ 2.5cm

① 1.5cm

$$4:6 = x:(5 - x)$$

20 - 4x = 6x, x = 2(cm)

6. 다음 그림의 $\triangle ABC$ 에서 점 D,E 는 각각 \overline{AB} , \overline{AC} 의 중점이고, 점 F,G 는 각각 \overline{BE} , \overline{CD} 의 중점이다. $\overline{BC}=18~\mathrm{cm}$ 일 때, \overline{FG} 의 길이를 구하여라.



cm

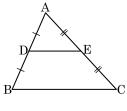
$$ightharpoonup$$
 정답: $\frac{9}{2}$ $\underline{\text{cm}}$

해설
$$\overline{\mathrm{DE}} = \frac{1}{2}\overline{\mathrm{BC}} = 9\,\mathrm{(cm)}$$

$$\overline{FG} = \frac{1}{2}(18 - 9) = \frac{9}{2} \text{ (cm)}$$

 다음 그림에서 점 D, E 는 각각 AB, AC 의 중점이다. △ADE = 15cm² 일 때, △ABC 의 넓이를 구하여라.

 cm^2



▶ 답:

해설

ΔADE와 ΔABC 의 닮음비는 AD : AB = 1 : 2 넓이의 비는 1² : 2² = 1 : 4 이다.

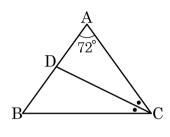
 \triangle ABC 의 넓이를 $x \text{ cm}^2$ 라 하면 1:4=15:x

 $\therefore x = 60$

. 축척이 $\frac{1}{100000}$ 인 지도에서 실제 거리가 $5 ext{km}$ 인 두 지점은 길이가 얼마로 나타나는가?

축척이
$$\frac{1}{100000}$$
 이므로 닮음비는 $1:100000$ 이다.지도에서의 거리를 x 라 하면 $1:100000=x:500000$ $\therefore x=\frac{500000}{100000}=5\,\mathrm{cm}$

9. 다음 그림에서 $\triangle ABC$ 는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이다. $\angle A = 72^\circ$ 이고 $\angle ACD = \angle BCD$ 일 때, $\angle ADC$ 의 크기는?



① 51° ② 61° ③ 71° ④ 81° ⑤ 91°

$$\triangle ABC$$
 는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이므로 $\angle ACB = \frac{1}{2}(180^{\circ} - 72^{\circ}) = 54^{\circ}$

$$\angle DCB = \angle ACD = \frac{1}{2} \times 54^{\circ} = 27^{\circ}$$

$$\therefore \angle ADC = 54^{\circ} + 27^{\circ} = 81^{\circ}$$

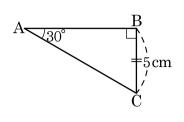
10. 다음 그림에서 $\triangle ABC$ 의 넓이는? (단, $\angle BAC = 90^\circ$, \overline{BD} , \overline{CE} 는 각각 점 B, C 에서 \overline{FG} 에 내린 수선, $\overline{AB} = \overline{AC}$, $\overline{BD} = \overline{C}$

 $\triangle BAD = \triangle ACE (RHA 합동) 이므로 <math>\overline{AD} = \overline{CE} = 3, \overline{AE} =$

$$\overline{\mathrm{BD}} = 7$$
 이고,
사다리꼴 EDBC 의 넓이는
$$\frac{1}{2}(\overline{\mathrm{DB}} + \overline{\mathrm{EC}}) \times \overline{\mathrm{ED}} = \frac{1}{2}(7+3) \times (3+7) = 50 \ \mathrm{OP}.$$

 $\triangle BAD = \triangle ACE = \frac{1}{2} \times 3 \times 7 = \frac{21}{2}$ $\therefore \triangle ABC = \Box EDBC - \triangle BAD - \triangle ACE$ $= 50 - \frac{21}{2} - \frac{21}{2} = 29$

11. 다음 그림은 $\angle A = 30^{\circ}$ 인 직각삼각형이다. $\overline{BC} = 5 \text{cm}$ 일 때, 외접원 의 넓이를 구하여라.



<u>cm²</u>

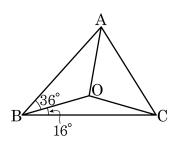
ightharpoonup 정답: $25\pi \mathrm{cm}^2$

해설
$$A \longrightarrow B \longrightarrow 5 \text{cm}$$

$$\angle BCA = 90 \,^{\circ} - 30 \,^{\circ} = 60 \,^{\circ}$$

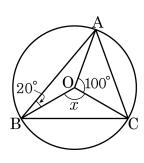
$$\overline{AC} \,^{\circ} = \overline{AC} \,$$

12. \triangle ABC 에서 점 O 는 외심이다. \angle OAC 의 크기를 구하여라.



해설

 $\angle OAC + \angle OBA + \angle OCB = 90^{\circ}$ $\angle OAC = 90^{\circ} - (36^{\circ} + 16^{\circ}) = 38^{\circ}$ **13.** 다음 그림에서 점 O가 삼각형 ABC의 외심이고, ∠ABO = 20°, ∠AOC = 100°일 때, ∠x의 크기는?



①
$$100^{\circ}$$
 ② 105° ③ 110° ④ 115° ⑤ 120°

해설
$$\Delta AOC는 \overline{OA} = \overline{OC} \, \mathbb{Q} \, \text{이등변삼각형이므로}$$

$$\angle OAC = \angle OCA = 40^{\circ}$$

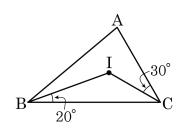
$$\Delta OAB \vdash \overline{OA} = \overline{OB} \, \mathbb{Q} \, \text{이등변삼각형이므로}$$

$$\angle OAB = \angle OBA = 20^{\circ}$$

$$\therefore \angle BAC = \angle BAO + \angle CAO = 60^{\circ}$$
점 O가 삼각형의 외심이므로

 $\angle BOC = 2 \times \angle BAC = 2 \times 60^{\circ} = 120^{\circ}$

14. 다음 그림에서 점 I는 \triangle ABC의 내심이다. \angle IBC = 20°, \angle ACI = 30° 일 때, \angle A = ()°의 크기는 얼마인지 구하여라.



▶ 답:

➢ 정답: 80

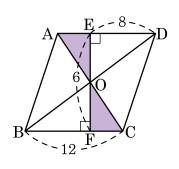
점 I가 \triangle ABC의 내심일 때, \angle BIC = $90^{\circ} + \frac{1}{2} \angle$ A이다.

2 점 I가 세 내각의 이등분선의 교점이므로 ∠ACI = ∠ICB = 30°

이다. 삼각형의 내각의 합은 180°이므로 ∠BIC = 180° – 20° – 30° = 130°이다.

$$\angle BIC = 90^{\circ} + \frac{1}{2}\angle A,$$
$$130^{\circ} = 90^{\circ} + \frac{1}{2}\angle A$$

15. 다음 평행사변형 ABCD에서 높이가 6이고 $\overline{ED} = 8$, $\overline{BC} = 12$ 일 때, 색칠한 부분의 넓이를 구하여라.



답:

➢ 정답: 12

[해설]

 $\Delta OAE \equiv \Delta OCF$ 이고 높이가 6이므로 색칠한 부분의 높이는 3이다.

또한, $\overline{AE}=\overline{FC}=4$ 이므로 $\triangle OAE$ 의 넓이는 $\frac{1}{2} \times 4 \times 3=6$ 이고,

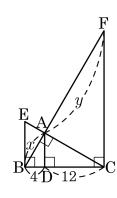
색칠한 부분의 넓이는 6+6=12이다.

- **16.** 다음 중 항상 닮음인 도형이 <u>아닌</u> 것은?
 - ① 두 정삼각형
 - ② 두 정사각형
 - ③ 합동인 두 삼각형
 - ④ 두 평행사변형
 - ⑤ 꼭지각의 크기가 같은 두 이등변삼각형

- 해설

- ③ 합동인 두 삼각형은 닮음비가 1 : 1 인 닮은 도형이다.
- ④ 두 평행사변형이 항상 닮음인 것은 아니다.

17. 다음 그림은 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC의 꼭짓점 A에서 \overline{BC} 에 내린 수선의 발을 D라 하고, 점 B와 C에서 \overline{BC} 에 각각 수직으로 그어 \overline{AC} 와 \overline{AB} 의 연장선과 만나는 점을 E와 F라 할 때. x와 y의 값은?



①
$$x = 4$$
, $y = 16$ ② $x = 4$, $y = 32$ ③ $x = 6$, $y = 24$

직각삼각형 ABC와 DBA는 닮음 $\overline{AB}: \overline{BD} = \overline{BC}: \overline{AB}$ 이므로 x: 4 = 16: x $x^2 = 4 \times 16$

$$x^{-} = 4 \times 10$$

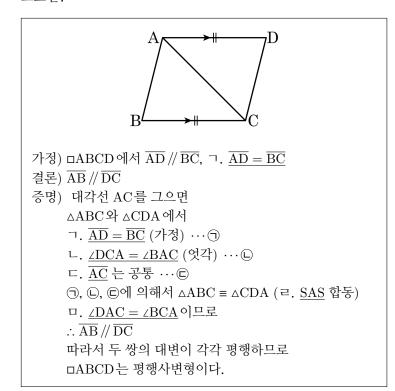
 $\therefore x = 8$

 $\triangle BCF$ 에서 $\overline{BD}: \overline{BC} = \overline{BA}: \overline{BF}$ 이므로 4:16=x:(x+y)

4:16 = 8:(8 + y)8 + y = 32

 $\therefore v = 24$

18. 다음은 '한 쌍의 대변이 평행하고 그 길이가 같은 사각형은 평행사 변형이다.'를 증명하는 과정이다. 밑줄 친 부분 중 틀린 곳을 모두 고르면?



③ □ ④ ⊒

해설

 \vdash . $\angle DCA = \angle BAC \rightarrow \angle DAC = \angle BCA$

 \Box /DAC = /BCA \rightarrow /DCA = /BAC

19.

평행사변형 ABCD 에서 \overline{BC} , \overline{CD} 의 중점을 각각 P, Q 라 하자. □ABCD = 84cm² 일 때, △APQ 의 넓이는 얼마인가?

①
$$29.5 \text{cm}^2$$

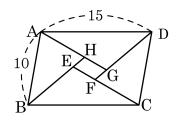
$$\triangle APQ = \Box ABCD - \triangle ABP - \triangle AQD - \triangle PCQ$$

$$= 84 - \frac{1}{4} \times 84 - \frac{1}{4} \times 84 - \frac{1}{8} \times 84$$

$$= 84 - 21 - 21 - 10.5$$

$$= 31.5 \text{ (cm}^2)$$

20. 다음 그림과 같은 평행사변형 ABCD에서 네 내각의 이등분선을 각각 연결하여 \square EFGH 를 만들었다. $\overline{\text{EH}}:\overline{\text{AD}}=1:3,\overline{\text{EF}}:\overline{\text{AB}}=1:2$ 일 때, \square EFGH의 둘레를 구하면?



1 20

② 25

③ 30

4 35

⑤ 40

해설

 $\angle A + \angle B = 180$ °이므로 $\angle EAB + \angle EBA = 90$ °, $\angle AEB = 90$ °이다.

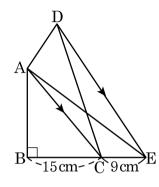
따라서 $\square EFGH$ 는 직사각형이다. $\overline{EH}:\overline{AD}=1:3$ 이므로

 $\overline{EH}: 15 = 1:3, \ \overline{EH} = 5$

EF: AB = 1:2이므로 EF: 10 = 1:2, EF = 5이다.

따라서 직사각형 중 가로와 세로의 길이가 같은 정사각형이고, 둘레는 2(5+5) = 20가 된다.

21. 다음 그림에서 \overline{AC} $/\!/ \overline{DE}$ 이고 $\triangle ABC = 135 cm^2$ 이다. $\overline{BC} = 15 cm$, $\overline{CE} = 9 cm$ 일 때, $\triangle ACD$ 의 넓이를 구하여라.



 cm^2

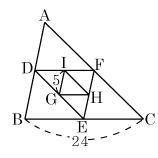
답:

➢ 정답: 81 cm²

 $\overline{AB} = 135 \times 2 \div 15 = 18(cm)$

 $\triangle ACD = \triangle ACE = \frac{1}{2} \times 9 \times 18 = 81 (cm^2)$

22. 다음 그림과 같이 $\triangle ABC$ 에서 세 변의 중점을 각각 D, E, F, $\triangle DEF$ 의 세 변의 중점을 각각 G, H, I라 할 때, $\triangle DEF$ 의 둘레의 길이가 36일 때, \overline{IH} 와 \overline{AB} 의 길이의 합을 구하여라.



답:

➢ 정답: 27

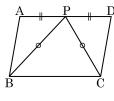
$$\overline{GH} = \frac{1}{4} \times \overline{BC} = 6$$

ΔDEF의 둘레가 36이므로 ΔIGH의 둘레는

 $\frac{1}{2} \times \triangle DEF = 18$

 $\overline{IH} = 18 - 5 - 6 = 7$, $\overline{AB} = 4 \times \overline{IG} = 20$ 따라서 \overline{IH} 와 \overline{AB} 의 길이의 합은 20 + 7 = 27이다. BM = CM일 때, ∠D의 크기는? ① 70° ② 80° ③90°

다음 평행사변형 ABCD에서 $\overline{AM} = \overline{DM}$,



23.

$$\overline{AB}=\overline{DC}, \ \overline{AM}=\overline{DM}, \ \overline{BM}=\overline{CM}$$
이므로 $\triangle ABM \equiv \triangle DCM(SSS$ 합동)

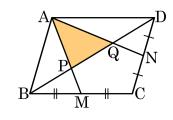
$$\angle A + \angle D = 180^{\circ}$$

 $\angle A = \angle D$ 이므로

(4) 100° (5) 110°

$$\therefore \angle A = \angle D = 180^{\circ} \times \frac{1}{2} = 90^{\circ}$$

24. 다음 그림에서 $\square ABCD$ 는 평행사변형이고, 점 M, N 은 각각 \overline{BC} , \overline{CD} 의 중점이다. $\triangle APQ$ 의 넓이가 $12cm^2$ 일 때, $\square ABCD$ 의 넓이는?



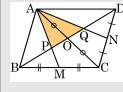
 364cm^2

- ① 48cm^2
 - 2 ② 56cm^{2}
- 468cm^2 572cm^2

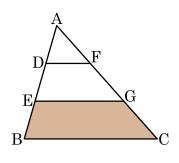
점 P, Q 가 각각 \triangle ABC , \triangle ADC 의 무게중심이므로 \triangle APO = $\frac{1}{6}$ \triangle ABC, \triangle AQO = $\frac{1}{6}$ \triangle ADC 이고, \triangle APQ = $\frac{1}{6}$ (\triangle ABC +

 $\triangle ADC$) = $\frac{1}{6} \square ABCD$ 이다.

따라서 $\square ABCD = 6\triangle APQ = 72(cm^2)$ 이다.



25. 다음 그림의 삼각형 ABC 에서 변 AB, AC 의 삼등분점을 각각 D 와 E, F 와 G 라 할 때, 사각형 DEGF 의 넓이가 60 이다. 이때, 사각형 EBCG 의 넓이를 구하여라.



▶ 답:

▷ 정답: 100

해설

△ADF ∽ △AEG ∽ △ABC 이고 닮음비는 1 : 2 : 3 이므로 넓이

비는 1 : 4 : 9 이다.

삼각형 ADF 의 넓이를 S 라 하면 $\triangle AEG = 4S$, $\triangle ABC = 9S$

이므로

사각형 DEGF 의 넓이는 4S - S = 3S = 60, S = 20따라서 사각형 EBCG 의 넓이는 $9S - 4S = 5S = 5 \times 20 = 100$