
다음 그림에서 점 O는  $\triangle ABC$ 의 외심이다.  $\overline{AB}=10\,\mathrm{cm}$ 이고,  $\triangle AOB$ 1. 의 둘레의 길이가  $24\,\mathrm{cm}$ 일 때,  $\Delta\mathrm{ABC}$ 의 외접원의 반지름의 길이는?

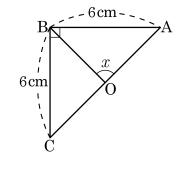


 $\bigcirc$  3cm

 $\bigcirc$  4cm

 $\ \, \ \, 3{\rm cm}$ 

 $\bigcirc$  6cm

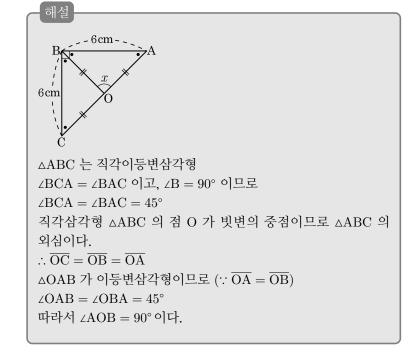

(5)7cm

점 O가  $\triangle ABC$ 의 외심이므로  $\overline{OA} = \overline{OB}$ 

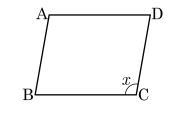
해설

따라서 △AOB의 둘레의 길이는  $\overline{\mathrm{OA}} + \overline{\mathrm{OB}} + \overline{\mathrm{AB}} = 2\overline{\mathrm{OA}} + 10 = 24$  $\therefore \mathrm{OA} = 7(\,\mathrm{cm})$ 

**2.** 다음 그림의 직각삼각형 ABC 에서 점 O 가 빗변의 중점일 때,  $\angle x$  의 크기를 구하면?




⑤90°

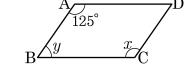

4 85°

②  $75^{\circ}$  ③  $80^{\circ}$ 

①  $70^{\circ}$ 



**3.** 평행사변형 ABCD 에서  $\angle$ A :  $\angle$ B = 5 : 4 일 때,  $\angle$ x 의 크기는?



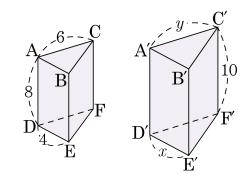

 $\angle A + \angle B = 180^{\circ}$ ,  $\angle A : \angle B = 5 : 4$  이므로

①  $70^{\circ}$  ②  $80^{\circ}$  ③  $90^{\circ}$  ④  $95^{\circ}$ 

 $\angle A = 180^{\circ} \times \frac{5}{9} = 100^{\circ}$  $\angle A = \angle C$  이므로  $\angle x = 100^{\circ}$ 

4. 다음 그림과 같이  $\angle A = 125\,^{\circ}$ 인  $\Box ABCD$ 가 평행사변형이 되도록 하는  $\angle x$ ,  $\angle y$ 의 크기를 구하여라.




답:

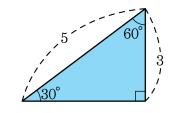
 $\triangleright$  정답:  $\angle x = 125^{\circ}$  $\triangleright$  정답:  $\angle y = 55^{\circ}$ 

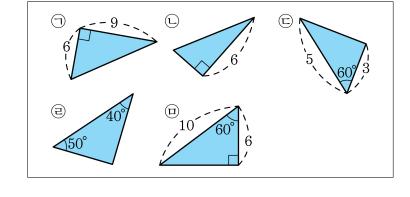
▶ 답:

 $\angle x = 125^{\circ}, \ \angle y = 180^{\circ} - 125^{\circ} = 55^{\circ}$ 

5. 다음 그림의 두 닮은 삼각기둥에서  $\overline{AB}$  와  $\overline{A'B'}$  이 서로 대응하는 변일 때, x+y 의 값을 구하여라.




답:


**> 정답:** 12.5 또는  $\frac{25}{2}$ 

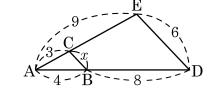
 $\overline{\mathrm{AD}}:\overline{\mathrm{C'F'}}=8:10=4:5$ 

 $4: x = 4:5, \quad x = 5$   $6: y = 4:5, \quad y = 7.5$   $\therefore x + y = 5 + 7.5 = 12.5$ 

6. 다음 보기 중에서 주어진 삼각형과 닮은 삼각형을 모두 골라라.






답:▷ 정답: ⓒ

▶ 답:

▷ 정답: ◎

©,@은 SAS 닮음이다.

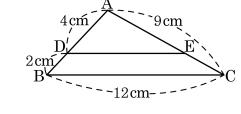
7. 다음 그림에서 x의 값을 구하시오.



▶ 답: ▷ 정답: 2

△ABC와 △ADE에서

해설

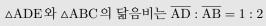

 $\overline{AC}: \overline{AE} = 3:9 = 1:3$  $\overline{AB}:\overline{AD}=4:(4+8)=1:3$ 

∠A 는 공통 ∴ △ABC ∽ △ADE (SAS 닮음)

 $\overline{\mathrm{BC}}:\overline{\mathrm{DE}}=1:3$  이므로 x:6=1:3

 $\therefore x = 2$ 

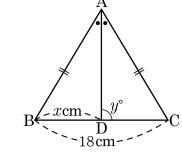
다음 그림과 같이  $\Delta ABC$  에서  $\overline{DE}//\overline{BC}$  일 때, 다음 중 옳지 <u>않은</u> 8. 것은?




- ①  $\triangle ABC \hookrightarrow \triangle ADE$
- ②  $\overline{BC} : \overline{DE} = 3 : 2$  $\overline{\text{DE}} = 6\,\mathrm{cm}$
- $\ \, \overline{\mathrm{CE}}=3\,\mathrm{cm}$

④  $\triangle ABC$   $\hookrightarrow$   $\triangle ADE$  이므로  $\overline{AD}: \overline{AB} = \overline{DE}: \overline{BC}$  이다. 따라서  $4:6=\overline{DE}:12$ ,  $\overline{DE}=8\,\mathrm{cm}$  이다.

- 다음 그림에서 점 D, E 는 각각  $\overline{\mathrm{AB}},\ \overline{\mathrm{AC}}$  의 9. 중점이다.  $\triangle ADE = 20 cm^2$  일 때,  $\triangle ABC$ 의 넓이는?
  - $\bigcirc$  40cm<sup>2</sup>
- $\bigcirc$   $60 \mathrm{cm}^2$  $4 100 \text{cm}^2$
- $380 \text{cm}^2$


해설



넓이의 비는  $1^2:2^2=1:4$  이다.  $\triangle ABC$  의 넓이를  $x \text{ cm}^2$  라 하면

1:4=20:x $\therefore x = 80$ 

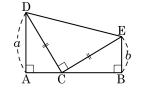
10. 다음 그림과 같이  $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC에서  $\angle A$ 의 이등 분선과  $\overline{BC}$ 의 교점을 D라 하자.  $\overline{BC}=18\mathrm{cm}$ 일 때, x+y의 값은?



① 77 ② 88

**3**99

4 110


⑤ 122

\_\_\_\_ 이등변삼각형에서 꼭지각의 이등분선은 밑변을 수직이등분하

卫로  $x = \frac{1}{2} \times 18 = 9 \text{ (cm)}, \ \angle y = 90^{\circ}$ 

$$\therefore x + y = 9 + 90 = 99$$

11. 다음 그림에 대한 설명으로 옳지 <u>않은</u> 것

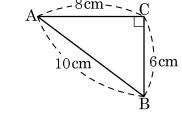


①  $\angle ADC = \angle ECB$   $\bigcirc$   $\angle$ CDE =  $\angle$ CEB  $\textcircled{4} \ \triangle ACD \equiv \triangle BEC$ 

 $\triangle ACD$  에서  $\angle ADC + \angle ACD = 90$  ° 또한, ∠DCE = 90 ° 이므로 ∠ACD + ∠ECB = 90 °

 $\therefore \angle ADC = \angle ECB \cdot \cdots \bigcirc$ △ACD 와 △BEC 에서

 $\angle A = \angle B = 90^{\circ} \cdot \cdot \cdot \cdot \cdot \Box$ 

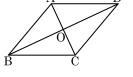

 $\overline{\mathrm{DC}} = \overline{\mathrm{CE}} \cdot \cdots \cdot \bigcirc$ 

 $\bigcirc$ ,  $\bigcirc$ ,  $\bigcirc$  에서  $\triangle ACD \equiv \triangle BEC (RHA 합동)$ 

 $\stackrel{\triangle}{=}, \stackrel{\triangle}{AC} = \stackrel{\triangle}{EB}, \stackrel{\triangle}{CB} = \stackrel{\triangle}{DA}$   $\therefore \overline{AB} = \overline{AC} + \stackrel{\triangle}{CB} = \overline{DA} + \overline{EB} = a + b$ 

 $\label{eq:energy} \mathbb{\Xi}, \, \Box \mathsf{ABED} = \frac{1}{2}(a+b) \times \overline{\mathsf{AB}} = \frac{1}{2}(a+b) \times (a+b) = \frac{1}{2}(a+b)^2$ 

12. 다음 그림과 같은 직각삼각형에서  $\overline{AB}=10$ cm,  $\overline{BC}=6$ cm,  $\overline{AC}=8$ cm 일 때,  $\triangle ABC$ 의 외접원의 넓이는?




- ①  $36\pi\mathrm{cm}^2$  $\textcircled{4} 20\pi\mathrm{cm}^2$
- $25\pi \text{cm}^2$

 $3 22\pi \text{cm}^2$ 

외접원의 반지름은 빗변의 길이의 반이므로  $\frac{10}{2}=5({
m cm})$  따라서 넓이는  $\pi imes 5^2=25\pi({
m cm}^2)$ 이다.

13. 다음 보기 중 그림과 같은 평행사변형 ABCD 가 정사각형이 되도록 하는 조건을 모두 골라 라.



- $\ \, \bigcirc \ \, \overline{\mathrm{AC}} = \overline{\mathrm{DB}} \,\, , \, \overline{\mathrm{AB}} = \overline{\mathrm{AD}}$  $\bigcirc$   $\overline{\mathrm{BO}} = \overline{\mathrm{CO}}$ ,  $\angle \mathrm{ABC} = 90^{\circ}$
- $\ \ \ \ \overline{AC} = \overline{DB}$  ,  $\overline{AC} \bot \overline{DB}$
- $\ \, \ \, \ \, \overline{AB} = \overline{AD} \,\,,\, \overline{AC} \bot \overline{DB}$
- $\ \ \ \ \ \ \overline{\rm AC}\bot \overline{\rm DB}$  ,  $\angle {\rm ABC}=90^{\circ}$

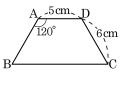
답:

답:

답:

▷ 정답: つ

▷ 정답: □


▷ 정답: □

로 수직이등분하면 된다. 그리고 네 변의 길이가 같고 네 각의

크기가 모두 같으면 된다. 따라서  $\overline{AC}=\overline{DB}$  ,  $\overline{AC}\bot\overline{DB}$  또는  $\overline{AC}=\overline{DB}$  ,  $\overline{AB}=\overline{AD}$  또는  $\overline{AC}\bot\overline{DB}$ ,  $\angle ABC=90\,^{\circ}$ 이면 된다.

평행사변형이 정사각형이 되려면 두 대각선의 길이가 같고 서

**14.** 다음 그림과 같이 AD // BC 인 등변사다리꼴 ABCD 에서 CD = 6cm, AD = 5cm, ∠A = 120° 일 때, □ABCD 의 둘레의 길이를 구하여라.



➢ 정답: 28cm

▶ 답:

해설

□AECD 는 평행사변형이므로 AD = A 5cm D 6cm ABE 는 정삼각형이므로 AB = BE = 6cm 60° 60° 6cm - E 5cm C 1 (cm)
□ABCD 의 둘레는 5+6+11+6 = 28(cm)

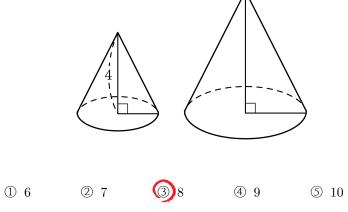
 $\underline{\mathrm{cm}}$ 

## 15. 다음 보기의 설명 중 옳은 것의 개수는?

마름모이다.

① 2개 ② 3개

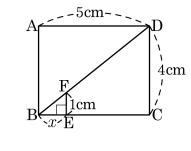
보기-


- 두 대각선이 서로 수직인 직사각형은 정사각형이다.
- 이웃하는 두 변의 길이가 같은 평행사변형은 마름모이다.○ 한 내각의 크기가 90°인 평행사변형은 정사각형이다.
- ⓐ 이웃하는 두 각의 크기가 같은 평행사변형은
- ① 한 내각이 직각인 평행사변형은 직사각형이다.
- ⑥ 한 내각의 크기가 90°인 마름모는 정사각형이다.⑥ 두 대각선의 길이가 같은 마름모는 직사각형이다.

**3**4개 **4**5개 **5**6개

© 한 내각의 크기가 90°인 평행사변형은 직사각형이다.

- ② 이웃하는 두 각의 크기가 같은 평행사변형은 직사각형이다.◇ 두 대각선의 길이가 같은 마름모는 정사각형이다.
- 0 1 11 12 11 2 0 1 10 1 1


16. 다음 그림에서 두 원뿔은 서로 닮은 도형이고, 작은 원과 큰 원의 밑면의 둘레의 길이가 각각  $4\pi$ ,  $8\pi$ 일 때, 큰 원뿔의 높이를 구하면?



## 작은 원뿔의 밑면의 반지름은 $2\pi r = 4\pi$ 에서 r = 2

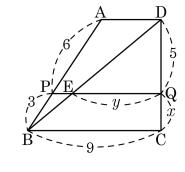
큰 원뿔의 밑면의 반지름은  $2\pi r' = 8\pi$ 에서 r' = 4두 원의 반지름의 닮음비가 1:2이므로 원뿔의 높이는 1:2=4 : (큰 원뿔의 높이), 따라서 (큰 원뿔의 높이) = 8이다.

17. 다음 그림에서 사각형 ABCD 는 직사각형일 때, x 의 값을 구하면?



② 1.25 ③ 1.5 ④ 1.75 ⑤ 2

△BCD ♡ △BEF 이므로  $\overline{\mathrm{CD}}: \overline{\mathrm{EF}} = \overline{\mathrm{BC}}: \overline{\mathrm{BE}}$  이다.


① 1

해설

 $\overline{BC} = \overline{AD} = 5 \text{ (cm)}$ 이므로 4:1=5:x

 $4x = 5 \qquad \therefore \quad x = 1.25$ 

**18.** 다음 그림에서  $\overline{\mathrm{AD}}//\overline{\mathrm{PQ}}//\overline{\mathrm{BC}}$  일 때, x+y 의 값은?

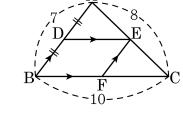


3 8

**⑤** 9

① 7 ② 7.5

 $\overline{\mathrm{EQ}}//\overline{\mathrm{BC}}$ 이므로  $\overline{\mathrm{DE}}:\overline{\mathrm{EB}}=\overline{\mathrm{DQ}}:\overline{\mathrm{QC}}\cdots$   $\bigcirc$ 


 $x = \frac{15}{6} = 2.5$ 

해설

 $\overline{\mathrm{DQ}}:\overline{\mathrm{DC}}=\overline{\mathrm{EQ}}:\overline{\mathrm{BC}}$  이므로 5:7.5=y:9

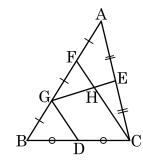
2:3=y:9 $y = \frac{18}{3} = 6$   $\therefore x + y = 2.5 + 6 = 8.5$ 

19. 다음 그림의  $\triangle ABC$  에서  $\overline{AB}$  의 중점 D 에서  $\overline{BC}$  에 평행하게 그은 직선과  $\overline{AC}$ 와의 교점을 E 라 하고, 점 E 에서  $\overline{AB}$  에 평행하게 그은 직선과  $\overline{BC}$ 와의 교점을 F 라고 할 때,  $\overline{CE}+\overline{EF}+\overline{FC}$  를 구하여라.



▷ 정답: 12.5

답:


 $\overline{AD}=\overline{DB}$  ,  $\overline{DE}//\overline{BC}$  이므로  $\overline{AE}=\overline{EC}$ ,  $\therefore$   $\overline{CE}$  의 길이는 4

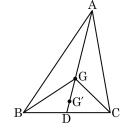
 $\overline{AE}=\overline{EC}$  ,  $\overline{AB}//\overline{EF}$  이므로  $\overline{BF}=\overline{CF},$  ..  $\overline{FC}$  의 길이는 5

이다.  $\overline{\mathrm{EF}} = \frac{1}{2}\overline{\mathrm{AB}} = \frac{1}{2} \times 7 = 3.5$ 

따라서  $\overline{\text{CE}} + \overline{\text{EF}} + \overline{\text{FC}} = 4 + 3.5 + 5 = 12.5$ 

 $oldsymbol{20}$ . 다음 그림과 같은  $\Delta ABC$  가 주어졌을 때, 길이의 비가 다른 하나를 고르면?




- $\bigcirc$   $\overline{\mathrm{GF}}:\overline{\mathrm{GB}}$  $\textcircled{4} \ \overline{AE} : \overline{EC}$   $\textcircled{5} \ \overline{BD} : \overline{DC}$
- $\overline{\text{GH}}:\overline{\text{HE}}$

## ③ $\triangle AGC$ 에서 점 H 는 무게중심이므로 $\overline{GH}:\overline{HE}=2:1$ 이다.

①, ②, ④, ⑤는 모두 길이의 비가 1 : 1 이다.

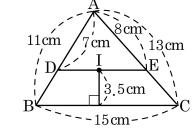
**21.** 다음 그림에서 점 G 는  $\triangle ABC$  의 무게중심이고, 점 G' 는  $\triangle GBC$  의 무게중심이다.  $\overline{DG'}=3\,\mathrm{cm}$  일 때,  $\overline{AG}$  의 길이를 구하여라.

② 12cm



(5) 18cm

③ 14cm


④ 16cm

 $\overline{\mathrm{DG'}} = \frac{1}{3}\overline{\mathrm{GD}}$  이므로  $\overline{\mathrm{GD}} = 3\overline{\mathrm{DG'}} = 3 \times 3$ 

① 10cm

 $\overline{GD} = 3\overline{DG'} = 3 \times 3 = 9(cm) ,$   $\overline{AG} = 2\overline{GD} = 2 \times 9 = 18(cm)$ 

 ${f 22}$ . 다음 그림에서 점 I 는 삼각형 ABC 의 내심이고  ${f \overline{DE}}//{f BC}$  일 때, □DBCE 의 넓이는 얼마인가?



- $44\mathrm{cm}^2$
- $\bigcirc$   $46 \text{cm}^2$

 $\bigcirc$   $40 \text{cm}^2$ 

- $342 \text{cm}^2$

점 I 가 내심이고  $\overline{\mathrm{DE}}//\overline{\mathrm{BC}}$  일 때,

(  $\triangle ADE$  의 둘레의 길이 )=  $\overline{AB} + \overline{AC}$ 따라서 ( $\triangle ADE$  의 둘레의 길이) =  $\overline{AB} + \overline{AC} = 11 + 13 = 24 (cm)$ 

 $\overline{\mathrm{AD}} + \overline{\mathrm{AE}} = 7 + 8 = 15 \mathrm{(cm)}$  이므로  $\overline{\mathrm{DE}} = 24 - 15 = 9 \mathrm{(cm)}$ 이다.

따라서 사다리꼴 DBCE 의 넓이는

 $(9+15) imes 3.5 imes rac{1}{2} = 84 imes rac{1}{2} = 42 ( ext{cm}^2)$  이다.

 ${f 23}$ . 다음 그림과 같은 평행사변형  ${f ABCD}$ 에서  ${\it \angle B}$ 의 이등분선이  ${f AD}$ 와 만나는 점을 E,  $\overline{\text{CD}}$ 의 연장선과 만나는 점을 F라고 한다.  $\overline{\text{AB}} = 6 \text{cm}$ ,  $\overline{\mathrm{AD}} = 8\mathrm{cm}$  일 때, x, y를 차례대로 구하여라.

 $\underline{\mathrm{cm}}$ 

답:

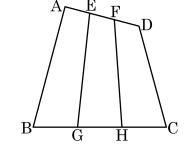
 $\underline{\mathrm{cm}}$ ightharpoonup 정답:  $x=2\underline{\mathrm{cm}}$ 

**> 정답**: y = 8<u>cm</u>

답:

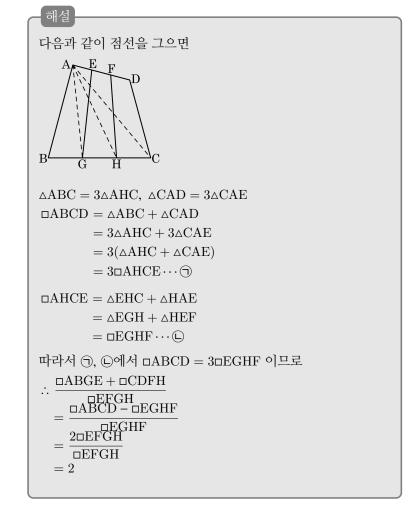
## $\overline{\rm AB}//\overline{\rm CF}$ 이므로 $\angle {\rm ABE} = \angle {\rm BFC}$ (엇각)이다.

해설


그러므로 삼각형 BCF 는 이등변삼각형이다. 평행사변형의 대변의 길이는 같으므로  $\overline{
m BC}$  의 길이는  $\overline{
m AD}$  의

길이와 같다.  $\therefore y = 8 \text{cm}$ 삼각형 BCF 는 이등변삼각형이므로  $\overline{\mathrm{BC}} = \overline{\mathrm{CF}}$ 

8 = x + 6


 $\therefore x = 2\mathrm{cm}$ 

**24.** 다음 그림에서  $\overline{AE}$  =  $\overline{EF}$  =  $\overline{FD}$ ,  $\overline{BG}$  =  $\overline{GH}$  =  $\overline{HC}$  일 때,  $\frac{\square ABGE + \square CDFH}{\square EFHG}$  의 값을 구하여라.



▷ 정답: 2

▶ 답:



- 25. 세 변의 길이가  $18 {
  m cm}$  ,  $24 {
  m cm}$  ,  $36 {
  m cm}$  인 삼각형이 있다. 한 변의 길이가 3cm이고 이 삼각형과 닮음인 삼각형 중에서 가장 작은 삼각형과 가장 큰 삼각형의 닮음비를 구하여라.

- ① 2:3 ② 4:5 ③ 1:2 ④ 3:5 ⑤ 1:3

해설

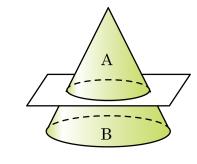
주어진 삼각형의 변의 길이의 비는 18:24:36=3:4:6이고 한 변의 길이가  $3\mathrm{cm}$ 인 삼각형을 만들면 3가지 경우가 나온다. 그 중 가장 작은 삼각형의 세 변의 길이는  $\frac{3}{2}$  : 2 : 3이고, 가장 큰

삼각형의 세 변의 길이는 3 : 4 : 6이다. 따라서 가장 작은 삼각형과 가장 큰 삼각형의 닮음비는 3:6=1:2이다.

26. 다음 그림에서 점 G 는  $\triangle ABC$  의 무게중심이다. 점 F, E 는  $\overline{AB}$ ,  $\overline{AC}$  의 중점이고  $\overline{AP}=\overline{DP}$  이고  $\triangle ABC=18cm^2$  일 때,  $\triangle FGE$  의 넓이를 구하여라.

▶ 답:

 $\underline{\mathrm{cm}^2}$ 


ightharpoonup 정답:  $rac{3}{2}$   $m cm^2$ 

 $\overline{AP}$ :  $\overline{PG}$ :  $\overline{GD} = 3:1:2$   $\triangle FGE = \frac{1}{4} \square AFGE$   $= \frac{1}{4} \times \frac{1}{3} \triangle ABC$   $= \frac{1}{12} \times 18 = \frac{3}{2} (cm^2)$ 

$$= \frac{1}{4} \times \frac{3}{3} \times 18 =$$

$$= \frac{1}{12} \times 18 =$$

27. 다음 그림과 같이 원뿔의 밑면에 평행하도록 자른 원뿔대의 높이가 2 cm 이었을 때, 처음 원뿔의 높이를 구하면?(단, 잘린 원뿔 A 의 부피 는 8cm³ 이고, 원뿔대 B 의 부피는 19cm³ 이다.)



① 2cm

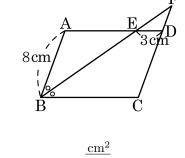
② 4cm

 $\Im$  5cm

(4) 6cm

 $\bigcirc$  8cm

해설 잘린 원뿔 A 의 부피는  $8 cm^3$  이고, 원뿔대 B 의 부피는  $19 cm^3$ 


이므로 원뿔 A 와 처음 원뿔의 부피의 비는 8 : 27 이다.

따라서 두 원뿔의 닮음비는 2:3 이다.

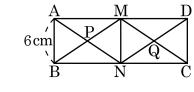
이때, 원뿔대의 높이가 2cm 이므로 처음 원뿔의 높이는 6cm

이다.

 ${f 28}$ . 다음 그림과 같은 평행사변형  ${
m ABCD}$  에서  ${
m \triangle ABE}=10{
m cm}^2$  이라 할때, □EBCD 의 넓이를 구하여라.

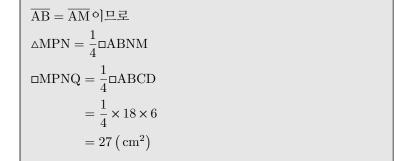


▷ 정답: 17.5 cm²

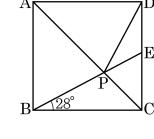

▶ 답:

 $\triangle ABE$  에서  $\overline{AE}=\overline{AB}=8\,(\mathrm{cm})$  이므로  $\triangle ABE$  에서 높이를 h 라고 하면  $10 = \frac{1}{2} \times 8 \times h, h = 2.5 \, (\, \mathrm{cm})$ 

 $\therefore \Box EBCD = 11 \times 2.5 - 10$ = 27.5 - 10


 $=17.5\left(\,\mathrm{cm^2}\right)$ 

**29.** 다음 직사각형 ABCD에서  $\overline{AD}=18\,\mathrm{cm}$ 이다. 점 M, N이  $\overline{AD}$ ,  $\overline{BC}$ 의 중점일 때,  $\square$ MPNQ의 넓이를 바르게 구한것은?




 $27\,\mathrm{cm}^2$ 

- ②  $21 \,\mathrm{cm}^2$ ③  $30 \,\mathrm{cm}^2$
- $3 24 \,\mathrm{cm}^2$



**30.** 다음 그림의 정사각형 ABCD에서  $\angle$ EBC =  $28\,^{\circ}$ 일 때,  $\angle$ APD의 크기 를 구하여라.



▷ 정답: 73\_°

답:

 $\triangle$ DPC  $\equiv$   $\triangle$ BPC (SAS합동)  $\angle PDC = 28$ °,  $\angle PEC = 62$ °이므로

 $\angle \mathrm{DPE} = 34\,^{\circ}$  $\therefore \angle APD = (180^{\circ} - 28^{\circ} - 45^{\circ}) - 34^{\circ}$ 

 $= 107 \,^{\circ} - 34 \,^{\circ} = 73 \,^{\circ}$