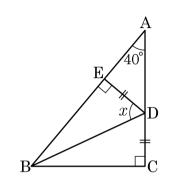
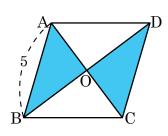
1. $\triangle ABC$ 에서 $\angle C = \angle E = 90^\circ$, $\angle A = 40^\circ$, $\overline{CD} = \overline{ED}$ 일 때, $\angle x$ 의 크기는?



해설

△BDE ≡ △BDC(RHS합동) 이므로, ∠EBD = ∠CBD = 25°, △BDE 에서 ∠x = 65° 다음 평행사변형 ABCD에서 두 대각선의 길이의 합이 14일 때, 어두 운 부분의 둘레의 길이는?



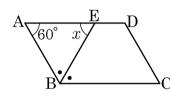
① 21

② 22

③ 23

(5) 25

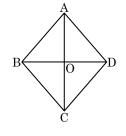
 $\overline{AO} + \overline{CO} = \overline{AC}, \ \overline{BO} + \overline{OD} = \overline{BD}$ 이므로 어두운 부분의 둘레는 $2\overline{AB} + \overline{AC} + \overline{BD} = 10 + 14 = 24$ 이다. 3. 다음 그림과 같은 □ABCD에서 ∠B의 이등분선이 변 AD와 만나는 점을 E라 한다. 이때, □ABCD가 평행사변형이 되도록 하는 ∠x의 크기는?



해설

평행선의 엇각의 성질에 의해 \angle EBC = $\angle x$ 이고, 삼각형의 내각의 합은 180° 이므로 $x = 60^{\circ}$ 이다. **4.** 다음 그림의 □ABCD 는 마름모이다. 다음 중 옳지 <u>않은</u> 것은?

- - $\overline{BO} = \overline{DO}$
- ⑤ AC⊥BD



- 마름모의 정의
 평행사변형의 성질
- ③ 평행사변형의 성질
- ④ 직사각형의 성질
- ⑤ 마름모의 성질

5. 다음 그림의 마름모 ABCD 가 정사각형이 되기 위한 조건을 모두 고르면? (정답 2 개)

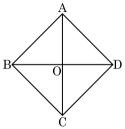
- ① $\angle BAC = \angle DAC$
- ② $\angle ABD = \angle CBD$

- $\overline{\text{(3)}}\overline{\text{AO}} = \overline{\text{BO}}$

해설

- ③ 평행사변형에서 이웃하는 두 각의 합은 180° 인데 ∠DAB = ∠ABC 이면, ∠DAB = ∠ABC = 90°가 되어 □ABCD 는 네 변의 길이가 모두
- 같고, 네 내각의 크기가 모두 같으므로 정사각형이 된다.
- 되면 $\overline{AO} = \overline{BO} = \overline{CO} = \overline{DO}$ 가 되어 $\square ABCD$ 는 직사각형이 된다. 따라서 $\square ABCD$ 는 네 변의 길이가 모두 같고 네 내각의 크기가 모두 같으므로 정사각형이 된다.

⑤ 평행사변형에서 $\overline{AO} = \overline{CO}$. $\overline{BO} = \overline{DO}$ 인데 $\overline{AO} = \overline{BO}$ 가



6. △ABC ♡△DEF 이고, 닮음비가 7:4일 때, △DEF 의 둘레의 길이가 24cm 라고 한다. 이 때, △ABC의 둘레의 길이는?

① 14cm ② 28cm ③ 35cm ④ 42cm ⑤ 56cm

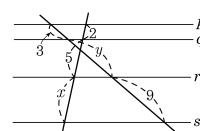
```
해설

△ABC의 둘레의 길이를 xcm라 하면 닮음비가 7:4이므로

7:4=x:24

∴ x=42
```

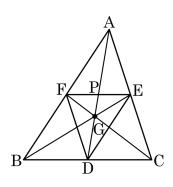
7. 다음 그림과 같이 4 개의 평행선이 두 직선과 만날 때, x + 2y 의 값은?



① 15 ② 17 ③ 19 ④ 21 ⑤ 23

$$3: y = 2: 5, \ y = \frac{15}{2}$$
$$5: x = \frac{15}{2}: 9, \ x = 6$$
$$\therefore x + 2y = 6 + 15 = 21$$

8. 다음 그림에서 점 G 는 \triangle ABC 의 무게 중심일 때, 보기에서 옳지 않은 것을 골라라.

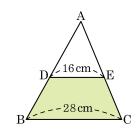


보기

- © 점G 는 △DEF 의 무게 중심이다.
- © $\triangle ABC$ 의 둘레는 $\triangle DEF$ 둘레의 2 배이다.
- \bigcirc $\overline{PG} = \overline{GD} = 1:3$
- 답
- ▷ 정답: □

해설 \square 점G 는 \triangle DEF 의 무게 중심이므로 $\overline{PG}=\overline{GD}=1:2$ 이다.

다음 그림에서 DE // BC 이고 △ADE = 48 cm² 일 때, □DBCE 의 넓이를 구하여라.



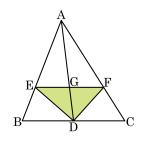
<u>cm²</u>

▷ 정답: 99<u>cm²</u>

해설

△ADE, △ABC 의 닭음비는 16: 28 = 4: 7 넓이의 비는 4²: 7² = 16: 49 이므로 △ADE: □DBCE = 16: (49 - 16) = 16: 33 48: □DBCE = 16: 33 ∴ □DBCE = 99 (cm²) **10.** 다음 그림에서 점 $G \leftarrow \triangle ABC$ 의 무게중심

이고 \overline{BC} // \overline{EF} 이다. $\triangle ABC = 144 \, \text{cm}^2$ 일 때. △DEF 의 넓이를 구하여라.

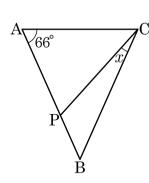


답:

 $\triangle DEF = \frac{1}{2} \triangle AEF = \frac{1}{2} \times \frac{4}{9} \triangle ABC = \frac{2}{9} \times 144 = 32 \text{ (cm}^2\text{)}$

 cm^2

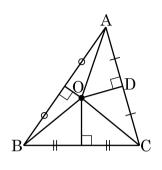
11. 다음 그림에서 $\triangle ABC$ 는 $\overline{AB} = \overline{CB}$, $\overline{CA} = \overline{CP}$ 이고, $\angle A = 66^\circ$ 일 때, $\angle x$ 의 크기는?



① 16° ② 18° ③ 20° ④ 22° ⑤ 24°

해설

로 ΔACP 도 이 등면심각 영어로 ∠ACP = 180° - 2 × 66° = 48° ∴ /x = 66° - 48° = 18° 12. 다음은 「삼각형의 세 변의 수직이등분선은 한 점에서 만난다」를 증명하는 과정이다. □ 안에 들어갈 알맞은 것은?



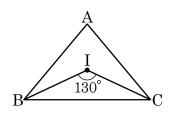
위 그림과 같이 $\triangle ABC$ 에서 \overline{AB} . \overline{BC} 의 수직이등분선의 교점을 O 라 하고. 점 O 에서 \overline{AC} 에 내린 수선의 발을 D 라 하자. 점 $O \vdash \overline{AB}$ 의 수직이등분선 위에 있으므로 $\overline{OA} = \overline{OB} \cdots$ 또. 점 $O \vdash \overline{BC}$ 의 수직이등분선 위에 있으므로 $\overline{OB} = \overline{OC}$ ·····(L) ①. ①에서 OA = $\triangle AOD$ 와 $\triangle COD$ 에서 $\angle ADO = \angle CDO = 90^{\circ}$ $\overline{OA} =$ OD 는 공통 ∴ △AOD = △COD (RHS 합동) 따라서. $\overline{AD} = \overline{CD}$ 이므로 \overline{OD} 는 \overline{AC} 의 수직이등분선이 된다. 즉. ΔABC 의 세 변의 수직이등분선은 한 점 O 에서 만난다.

 $\bigcirc \overline{OD}$ $\bigcirc \overline{OA}$ $\bigcirc \overline{AD}$ $\bigcirc \overline{CD}$

해설

 $\overline{OA} = \overline{OB}$, $\overline{OB} = \overline{OC}$ 이므로 $\overline{OA} = \overline{OC}$ 이다.

13. 다음 그림에서 점 $I \leftarrow \triangle ABC$ 의 내심이다.



∠BIC = 130° 일 때, ∠BAC 의 크기를 구하여라.

답:

_

➢ 정답: 80°

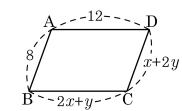
해설

 $\angle BIC = 90^{\circ} + \frac{1}{2} \angle BAC$

 $130^{\circ} = 90^{\circ} + \frac{1}{2} \angle BAC$

- $\frac{1}{2} \angle BAC = 40^{\circ}$
- $\therefore \angle BAC = 80^{\circ}$

14. 다음 그림과 같이 \square ABCD 가 평행사변형이 되도록 x, y 의 값을 구하 여라.



$$ightharpoonup$$
 정답: $x = \frac{16}{3}$

$$\triangleright$$
 정답: $y = \frac{4}{3}$

연립방정식 $\begin{cases} 2x + y = 12 \\ x + 2y = 8 \end{cases}$ 을 풀면, $x = \frac{16}{3}, \ y = \frac{4}{3}$

15. 평행사변형 ABCD 에서 ∠A, ∠C 의 이등분선 이 변 BC, AD 와 만나는 점을 각각 E, F 라하자. ĀE = 3 이고 사각형 AFCE 의 둘레의 길이가 26 일 때, 평행사변형 ABCD 의 둘레 의 길이를 구하여라.

해설

평행사변형 AFCE 의 둘레의 길이가 $2 \times (\overline{AF} + 3) = 26$ 이므로 $\overline{AF} = 10$ 이다.

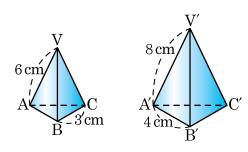
또한 $\angle FAE = \angle AFB(:: 엇각)$ 이므로 $\triangle ABF \leftarrow \overline{AB} = \overline{AF}$ 인

이등변삼각형이고

세 각의 크기가 모두 60° 이므로 정삼각형이므로 $\overline{AF} = \overline{AB} = \overline{ED} = 10$ 이다.

따라서 평행사변형 ABCD 의 둘레의 길이는 $2 \times (10+10+3) = 46$ 이다.

16. 다음 그림에서 두 삼각뿔 V – ABC 와 V' – A'B'C' 이 닮은꼴일 때, 보기에서 맞는 것을 고르면?



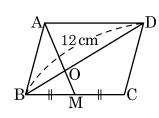
- 1-/
- \bigcirc \overline{AB} 의 대응변은 $\overline{A'B'}$ 이다.
- ⓒ 면 VBC에 대응하는 면은 면 V'A'B' 이다.
- ⑤ 닮음비는 2:1 이다.
- ② 닮음비는 3:4이다.
- ◎ 면 VAB에 대응하는 면은 면 V'A'B' 이다.
- \bigcirc , \bigcirc , \bigcirc
- ② ¬, □, ⊜
- ③ □, □, □

- (4) (7), (2), (D)
- (5) (E), (E), (E)

해설

- ⓒ 면 VBC에 대응하는 면은 면 V'B'C' 이다.
- © 닮음비는 3 : 4 이다.

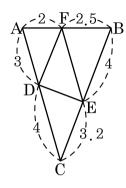
17. 다음 그림과 같은 평행사변형 ABCD에서 점 M은 \overline{BC} 의 중점이다. $\overline{BD}=12\mathrm{cm}$ 일 때, \overline{BO} 의 길이를 구하면?



① 3cm ② 4cm ③ 5cm ④ 6cm ⑤ 7cm

각) 따라서 $\triangle OAD \hookrightarrow \triangle OMB$ 이다. $\overline{AD}: \overline{BM} = 2:1$ 이므로 $\overline{DO}: \overline{BO} = 2:1$ 이다.

 $\overline{BD} = 3\overline{BO} = 12$ $\therefore \overline{BO} = 4(\text{cm})$ 18. 다음 그림의 $\overline{
m DE},\ \overline{
m DF},\ \overline{
m EF}$ 중에서 $\triangle
m ABC$ 의 변과 평행한 선분은?



① EF

② DF

 \odot \overline{DF} , \overline{EF}

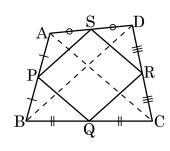
4 $\overline{\text{DE}}$, $\overline{\text{EF}}$

 \odot $\overline{\text{DE}}$

해설

 $\overline{\mathrm{BF}}:\overline{\mathrm{FA}}=\overline{\mathrm{BE}}:\overline{\mathrm{EC}}$ 라면, $\overline{\mathrm{AC}}$ // $\overline{\mathrm{EF}}$ 이다. 2.5:2=4:3.2 이므로 $\overline{\mathrm{AC}}$ // $\overline{\mathrm{EF}}$ 이다.

19. 다음 그림과 같은 $\Box ABCD$ 에서 변 \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} 의 중점을 각각 P, Q, R, S 라 하고, $\overline{AC} = \overline{BD}$ 이면, $\Box PQRS$ 는 어떤 사각형인가?



① 사다리꼴

④ 직사각

② 평행사변형

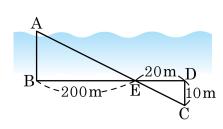
마름모

⑤ 정사각형

 $\overline{PQ} = \frac{1}{2}\overline{AC}$, $\overline{SR} = \frac{1}{2}\overline{AC}$ 이므로 $\overline{PQ} = \overline{SR}$ 이다.

 $\overline{QR} = \frac{1}{2}\overline{BD}$, $\overline{PS} = \frac{1}{2}\overline{BD}$ 이므로 $\overline{QR} = \overline{PS}$ 이다.

 $\overline{AC} = \overline{BD}$ 이므로 $\overline{PQ} = \overline{SR} = \overline{QR} = \overline{PS}$ 따라서 $\Box PQRS$ 는 네 변의 길이가 같으므로 마름모이다. **20.** 다음 그림은 강의 양쪽에 있는 두 지점 A, B 사이의 거리를 알아보기 위하여 측량하여 그린 것이다. 축척이 $\frac{1}{1000}$ 인 축도를 그리면 축도에 서 A, B 사이의 거리는?



① 6cm ② 8cm ③ 9cm ④ 10cm ⑤ 12cm

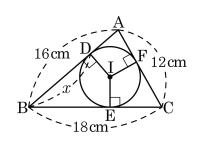
△ABE ○ △CDE 이므로 ĀB : CD = BE : DE,

$$x:10=200:20$$

∴ $x=100(m)$
축척이 $\frac{1}{1000}$ 이므로 축도에서 ĀB 의 길이는 $100 \times \frac{1}{1000} = \frac{1}{10}(m)$

따라서 10 cm 이다.

21. 다음 그림에서 점 I 는 \triangle ABC 의 내심이다. 이 때, \overline{BD} 의 길이 x 를 구하여라.



cm

답:

▷ 정답: 11<u>cm</u>

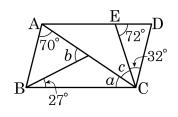
해설

점 I 가 삼각형의 내심이므로 $\overline{AD}=\overline{AF}, \overline{BE}=\overline{BD}, \overline{CE}=\overline{CF}$ 이다. $\overline{BD}=x=\overline{BE}$ 이므로 $\overline{CE}=18-x=\overline{CF}$, $\overline{AD}=16-x=\overline{AF}$ 이다.

 $\overline{AC} = \overline{AF} + \overline{CF} = 18 - x + 16 - x = 12$

 $\therefore x = 11 \text{(cm)}$

22. 다음 그림의 평행사변형 ABCD 에서 $\angle a + \angle b + \angle c$ 의 크기를 구하여라.



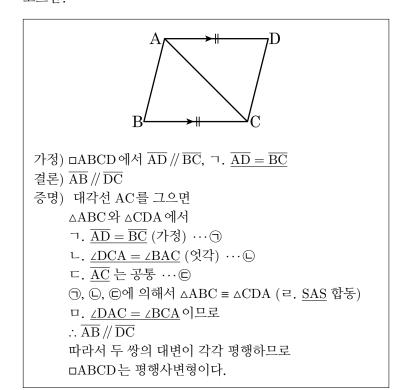
▶ 답:

➢ 정답 : 133 °

∠BAC = ∠ACD (엇각), ∠c = 70° - 32° = 38° ∠EDC = 180° - 72° - 32° = 76° = ∠ABC ∠a = 180° - 70° - 76° = 34° ∠b = ∠a + 27° = 34° + 27° = 61° (삼각형의 한 외각의 크기는 이웃하지 않은 두 각의 크기의 합과 같다.)

 $\therefore \ \angle a + \angle b + \angle c = 34^{\circ} + 61^{\circ} + 38^{\circ} = 133^{\circ}$

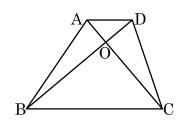
23. 다음은 '한 쌍의 대변이 평행하고 그 길이가 같은 사각형은 평행사 변형이다.'를 증명하는 과정이다. 밑줄 친 부분 중 틀린 곳을 모두 고르면?



③ □ ④ ⊒

해설

 \vdash . $\angle DCA = \angle BAC \rightarrow \angle DAC = \angle BCA$ \Box /DAC = /BCA \rightarrow /DCA = /BAC **24.** 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴에서 $\overline{OA}:\overline{OC}=1:3$ 이다. $\Box ABCD=64cm^2$ 일 때, $\triangle ABO$ 의 넓이를 구하여라.



 cm^2

▷ 정답: 12 cm²

해설

답:

 $\Box ABCD = \triangle AOD + \triangle DOC + \triangle OBC + \triangle ABO$ 이다. $\triangle AOD$ 의 넓이를 a 라고 하면, $1:3=a:\triangle DOC$, $\triangle DOC=3a$

 $\triangle DOC = \triangle ABO = 3a$, $1:3 = 3a: \triangle BOC$, $\triangle BOC = 9a$ $\triangle ABCD = a + 3a + 3a + 9a = 16a = 64 \text{cm}^2$, $a = 4 \text{cm}^2$

 $\therefore \triangle ABO = 3a = 12cm^2$.

25. ∠ABE ∠ACD, ∠BAE 때, ∠CAD 일 다 음 닮 <보 기> 옳 은 도 형 끼 리 것 게 짝 지 은?

 \bigcirc \triangle AEF \bigcirc \triangle DFC

 \bigcirc $\triangle ABF \hookrightarrow \triangle ADE$

 \bigcirc $\triangle ABC \hookrightarrow \triangle AED$

 \bigcirc \triangle AFD \bigcirc \triangle CFB