1. 등비수열 $\{a_n\}$ 에 대하여 $a_4a_5a_6=125$ 일 때, a_5 의 값은?

① 2 ② 5 ③ 8

4 16

⑤ 32

2. $\log_2(x-5)$ 의 값이 존재하기 위한 x의 범위는?

① x > 2 ② x < 2 ③ x > 5 ④ x < 5 ⑤ $x \ne 5$

3. $\log_a \sqrt{3} = \log_b 9$ 일 때, $\log_{ab} b$ 의 값은? ① 2 ② $\frac{8}{5}$ ③ $\frac{5}{4}$ ④ 1 ⑤ $\frac{4}{5}$

등차수열 $\{a_n\}$ 에 대하여 $a_5=4a_3,\ a_2+a_4=4$ 가 성립할 때, a_6 의 4. 값은?

① 5 ② 8 ③ 11 ④ 13 ⑤ 16

5. 수열 -3, a, b, c, 13이 이 순서로 등차수열을 이룰 때, a+b+c의 값은?

① 10 ② 15 ③ 20 ④ 25 ⑤ 30

6. 제 3항이 6이고 제 7항이 96인 등비수열의 첫째항과 공비의 곱을 구하여라. (단, 공비는 양수이다.)

▶ 답: _____

7. $4^3 + 5^3 + 6^3 + \dots + 10^3$ 의 값을 구하여라.

▶ 답: ____

 $\sqrt[3]{81} + \sqrt[3]{24} + \sqrt[3]{\frac{1}{9}} = 2^p \cdot 3^q$ 일 때, p + q의 값은?

① $\frac{5}{3}$ ② $\frac{7}{3}$ ③ $\frac{8}{3}$ ④ $\frac{10}{3}$ ⑤ $\frac{11}{3}$

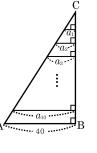
9. 다음 식의 값 중 값이 다른 하나는?

① 9^{log₉ 4}

 $\bigcirc \log_{\sqrt{5}} 25$

③ $\log_2 3 \log_3 5 \log_5 16$ ⑤ $\log_{\frac{1}{3}} 81$ $4 \log_{\frac{1}{2}} \frac{1}{16}$

Ü


- ${f 10.}~~5^a=2,~5^b=3$ 이라 할 때, $\log_6 72$ 를 a와 b의 식으로 바르게 나타낸 것은?

 - ① $\frac{a+b}{a-b}$ ② $\frac{2a+b}{b-a}$ ② $\frac{3a+2b}{a+b}$
- $3 \frac{2a-b}{a+b}$

11. 첫째항이 45이고, 공차가 -4인 등차수열은 첫째항부터 제 몇 항까지의 합이 처음 음수가 되는가?

① 23 ② 24 ③ 25 ④ 26 ⑤ 27

12. 오른쪽 그림과 같이 밑변 AB의 길이가 40인 직각삼각형 ABC가 있다. 변 AC를 11 등분하여 변 AB와 평행한 10개의 선분을 그려 그 길이를 각각 $a_1, a_2, a_3, \cdots, a_{10}$ 이라 할 때, $a_1 + a_2 + a_3 + \cdots + a_{10}$ 의 값을 구하여라.

▶ 답:

13. 다음을 계산하여라.

 $1 \cdot 1 + 2 \cdot 4 + 3 \cdot 7 + \dots + 10 \cdot 28$

▶ 답: _____

14. 수열 $1+(1+2)+(1+2+3)+\cdots+(1+2+3+\cdots+n)$ 의 합을 구하면?

① $\frac{1}{2}n(n+1)(n+2)$ ② $\frac{1}{4}n(n+1)(n+2)$ ③ $\frac{1}{6}n(n+1)(n+2)$ ④ $\frac{1}{4}n(n+1)(n+3)$ ⑤ $\frac{1}{6}n(n+1)(n+3)$

15. $\sum_{k=1}^{50} \sqrt{(2k+1)-2\sqrt{k(k+1)}}$ 의 값을 α 라 할 때, 자연수 n에 대하 여 $n < \alpha < n+1$ 이 성립한다. 이때 n의 값은?

① 5 ② 6 ③ 7 ④ 8 ⑤ 9

16. 수열 1, 5, 11, 19, 29, \cdots 의 일반항 a_n 은?

 $n^2 + n + 1$ $n^2 - n + 1$

 $n^2 + n - 1$ ③ $n^2 + n - 2$

 $n^2 - n - 1$

17. 수열 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ··· 에서 첫째항부터 제 100 항까지의 합은?

① 930 ② 945 ③ 950 ④ 955 ⑤ 960

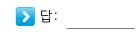
18. $a_{n+2}-a_{n+1}=a_{n+1}-a_n(n=1,\ 2,\ 3,\cdots)$ 을 만족시키는 수열 $\{a_n\}$ 에 대하여 $a_1=1,\ a_{n+9}-a_{n+2}=35$ 가 성립할 때, a_{100} 의 값을 구하여라.

▶ 답: _____

 ${f 19.}~~a_1=0,~a_{n+1}=-a_n+2$ 와 같이 정의된 수열 $\{a_n\}$ 의 일반항을 구하 면?(단, $n = 1, 2, 3, \cdots$)

① $1 + (-1)^n$ ② $2 + (-1)^n$ ③ $3 + (-1)^n$

 $\textcircled{4} \ 4 + (-1)^n \qquad \qquad \textcircled{5} \ 5 + (-1)^n$


20. 다음은 $\sum_{k=1}^n k^3 = \left\{ \frac{n(n+1)}{2} \right\}^2$ 이 성립함을 수학적 귀납법으로 증명한 것이다.

이라 할 때, f(5) + g(6)의 값을 구하여라. 답: _____

 \bigcirc 위의 증명 과정에서 \bigcirc 에 들어갈 식을 f(m), \bigcirc 에 들어갈 식을 g(m)

21. 다음 상용로그표를 이용하여 log ³√0.138 의 소수 부분을 구하여라.

子	0	1	2	3	4	5	6	7	8	9
1.0	.0000	.0043	.0086	.0128	.0170	.0212	.0253	.0294	.0334	.0374
1.1	.0414	.0453	.0492	.0531	.0569	.0607	.0645	.0682	.0719	.0755
1.2	.0792	.0828	.0864	.0899	.0934	.0969	.1004	.1038	.1072	.1106
1.3	.1139	.1173	.1206	.1239	.1271	.1303	.1335	.1367	.1399	.1430
1.4	.1461	.1492	.1523	.1553	.1584	.1614	.1644	.1673	.1703	.1732

- ${f 22}$. 바둑알로 다음 그림과 같은 모양을 만들 때, (n+1) 번째 모양에는 n번째 모양보다 바둑알이 몇 개 더 있는가?

첫 번째 두 번째 세 번째 네 번째

① n-2 ② n-1 ③ n ④ n+1 ⑤ n+2

- **23.** 세 양수 a, b, c에 대하여 $a^x = (\sqrt{b})^y = (\sqrt[3]{c})^z = 125, \ abc = 5\sqrt[5]{5}$ 가 성립할 때, $\frac{1}{x} + \frac{2}{y} + \frac{3}{z}$ 의 값은?
 - ① $\frac{2}{5}$ ② $\frac{4}{5}$ ③ $\frac{6}{5}$ ④ $\frac{18}{5}$ ⑤ $\frac{24}{5}$

24. 어느 지역의 바다에서 수면으로부터 dm 인 곳에서의 빛의 세기를 L(d)라 하면 $L(d+12)=\frac{3}{10}L(d)$ 의 관계식이 성립한다고 한다. 이 바다에서 수면에서의 빛의 세기의 10%인 곳의 수심을 소수점 아래 첫째 자리에서 반올림한 값을 구하면? (단, $\log 3 = 0.48$ 으로 계산한다.)

① 23m ② 25m ③ 27m ④ 29m ⑤ 31m

- 25. 30년간 자동차회사에 근무하던 사람이 명예퇴직을 하면서 퇴직금으로 2억 4천만 원을 받을 예정인데 이 돈을 은행에 예치하고 매년 말에 일정한 금액씩 연금 형식으로 받으려고 한다. 퇴직금을 모두 1월 초에 은행에 예치하고, 연말부터 연이율 5%의 복리로 10년간 지급받는다면 매년 말에 받을 금액은 얼마인가? (단, 1.05¹⁰ = 1.6으로 계산한다.)
 - ① 3000만원 ② 3080만원 ③ 3120만원 ④ 3160만원 ⑤ 3200만원