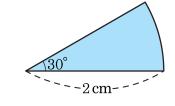

1. 다음 그림에서 $\angle a + \angle b + \angle c + \angle d + \angle e$ 의 크기는?

 \bigcirc 450°

 $\textcircled{1}360^{\circ}$

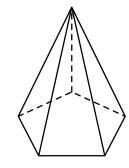
해설


③ 540°

4 630°

 $\ \ \ \ \ 720^{\circ}$

 $\angle a + \angle b + \angle c + \angle d + \angle e$ 의 크기는 오각형의 외각의 크기의 합과 같으므로 360° 이다.


다음 부채꼴의 호의 길이는? 2.

- ① $\frac{1}{5}\pi \text{cm}$ ② $\frac{1}{4}\pi \text{cm}$ ③ $\frac{1}{3}\pi \text{cm}$ ④ $\frac{1}{2}\pi \text{cm}$ ⑤ πcm

 $2\pi \times 2 \times \frac{30^{\circ}}{360^{\circ}} = \frac{1}{3}\pi \,(\text{cm})$

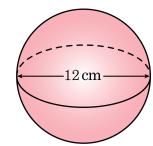
3. 다음 그림의 다면체의 이름과 옆면의 모양이 바르게 짝지어진 것은?

- ③ 사각기둥 사다리꼴
- ⑤ 오각뿔대 사다리꼴

① 사각뿔 - 삼각형

④ 오각뿔 - 삼각형

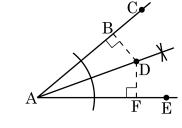
② 사각뿔 - 직사각형


다면체의 이름은 오각뿔이고 옆면의 모양은 각뿔이므로 삼각형

이다.

- 4. 다음 중 정다면체에 대한 설명으로 옳지 <u>않은</u> 것은?
 - ① 정삼각형이 한 꼭짓점에 5 개씩 모인 다면체는 정십이면체이다.
 - ② 정육면체의 모서리의 개수는 12 개이다.
 - ③ 정십이면체의 꼭짓점의 개수는 20 개이다.
 - ④ 정이십면체의 면의 모양은 정삼각형이다.⑤ 정이십면체의 모서리의 개수와 정십이면체의 모서리의 개수는
 - 같다.

정삼각형이 한 꼭짓점에 5 개씩 모인 다면체는 정이십면체이다.


5. 다음 그림과 같은 지름의 길이가 12인 구의 부피는?

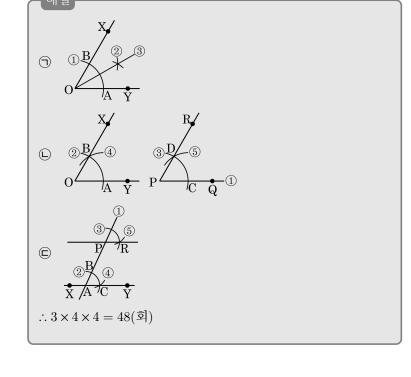
- ① $288\pi \text{cm}^3$ ② $268\pi \text{cm}^3$
- $3 248 \pi \text{cm}^3$
- (4) $228\pi \text{cm}^3$ (5) $200\pi \text{cm}^3$

 $V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi \times 6^3 = 288\pi \text{(cm}^3\text{)}$

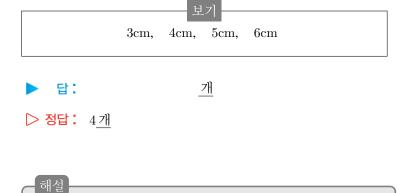
6. 다음 그림에서 \overrightarrow{AD} 는 $\angle CAE$ 의 이등분선이고 점 B, F 는 각각 점 D 에서 \overrightarrow{AC} , \overrightarrow{AE} 에 내린 수선의 발이다. 보기 중 옳지 않은 것은?

- ① $\angle DAC = \angle DAE$ ② $\overline{AB} = \overline{AF}$
- \angle AD = A
- $\boxed{3} \overline{AC} = \overline{AE}$
- ④ 점 D 에서 AC 에 이르는 거리는 BD 이다.
 ⑤ ∠DBA = 90°

해설


 $\Im \overline{AC} \neq \overline{AE}$

7. 다음 보기의 도형을 작도할 때 컴퍼스의 사용 횟수의 곱을 구하여라.


회

 ▷ 정답: 48 회

▶ 답:

8. 다음과 같이 네 개의 선분이 주어졌을 때, 작도 가능한 삼각형은 모두 몇 개인지 구하여라.

(3, 4, 5), (3, 4, 6), (3, 5, 6), (4, 5, 6)

9. 아래에서 주어진 조건들을 이용하여 삼각형 ABC 를 그릴 때, 하나로 결정되지 <u>않는</u> 것을 모두 찾아라.

 \bigcirc $\overline{AB} = 3$ cm, $\overline{AC} = 4$ cm, $\angle A = 43$ °

 \bigcirc $\overline{AB} = 2cm$, $\angle A = 30^{\circ}$, $\angle B = 45^{\circ}$

 \bigcirc $\angle A = 30^{\circ}, \ \angle B = 60^{\circ}, \angle C = 90^{\circ}$

 \bigcirc $\overline{AB} = 5$ cm, $\overline{BC} = 3$ cm, $\angle A = 30^{\circ}$

▶ 답:

▶ 답:

▶ 답:

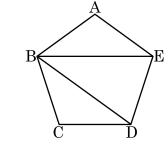
▷ 정답: □

▷ 정답: □

▷ 정답: 😐

하나로 결정된다.

⊙ 두 변의 길이와 그 끼인각의 크기가 주어졌으므로 삼각형은


① 한 변의 길이와 그 양 끝각의 크기가 주어졌으므로 삼각형은 하나로 결정된다. ⓒ 세 각의 크기가 주어 질 때, 삼각형은 무수히 많이 그릴 수 있다.

합보다 작으므로 삼각형이 하나로 결정된다. ⓐ 주어진 두 변 \overline{AB} , \overline{BC} 의 끼인각은 $\angle A$ 가 아니라 $\angle B$ 이다. $oxed{oxed}$ 세 변의 길이가 주어졌지만, 가장 긴 변의 길이 $(\overline{AC}=9\mathrm{cm})$

② 세 변의 길이가 주어지고, 가장 긴 변의 길이가 나머지 두 변의

가 나머지 두 변의 합과 같으므로 삼각형을 작도할 수 없다. : 삼각형이 하나로 결정되지 않는 경우는 \mathbb{C} , \mathbb{Q} , \mathbb{H} 이다.

10. 다음은 정오각형 ABCDE 의 두 대각선 BE 와 BD 길이가 같음을 보인 것이다. (가)~(마)에 들어갈 것으로 옳지 <u>않은</u> 것은?

- ④(라): ASA ⑤ (마): BD
- ① (가): $\overline{\text{CB}}$ ② (나): $\overline{\text{AE}}$
- ③ (다): ∠BCD
- 0 (1): ==

두 변의 길이와 그 끼인각의 크기가 같으므로 △ABE ≡ △CBD

(SAS 합동이다)

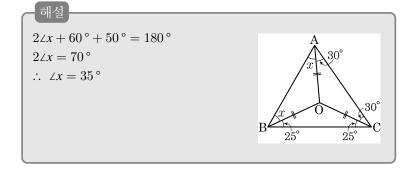
11. 다음 설명 중 옳은 것을 모두 찾아라.

- © 내각의 크기가 모두 같은 사각형은 정사각형이다.
- 정다각형은 내각의 크기와 변의 길이가 모두 같다.

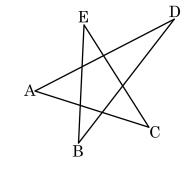
▶ 답:

▶ 답:

▷ 정답: ⑤


▷ 정답: ②

© 마름모는 네 변의 길이가 같지만 정사각형은 아니다. © 직사각형은 내각의 크기가 모두 같지만 정사각형이 아니다.


12. 다음 그림의 $\triangle ABC$ 에서 $\overline{OA} = \overline{OB} = \overline{OC}$ 이고, $\angle OCB = 25^\circ$, $\angle OAC = 30^\circ$ 일 때, x의 값을 구하여라.

B 25° C

답:▷ 정답: 35

13. 다음 그림에서 $\angle A=45^\circ$, $\angle B=35^\circ$, $\angle C=40^\circ$, $\angle E=35^\circ$ 일 때, $\angle D$ 의 크기는?

40°

⑤ 45°

① 25° ② 30° ③ 35°

삼각형의 외각의 성질에 의해 45° + 35° + 40° + ∠D° + 35° = 180° 이므로

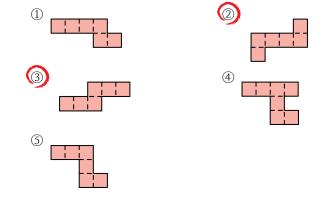
∠D = 25° 이다.

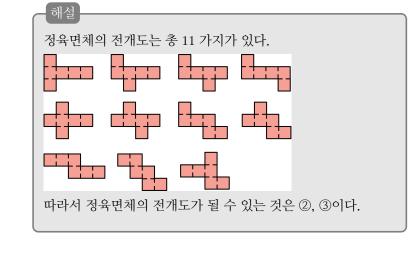
해설

- 14. 다음 그림에서 \overline{AC} 는 원 O 의 지름이고, ∠AOB = 60°, ∠COD = 30°일 때, 다음 중 옳은 것을 모두 고르면?

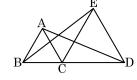
 - $\boxed{ \ \, 3 \ \, } \overline{\mathrm{AB}} < 2 \overline{\mathrm{CD}}$

① $\overline{AB} = 2\overline{CD}$


- \bigcirc $\overline{AB} = 2\overline{OC}$ $\textcircled{4} \triangle AOB = 2\triangle COD$
- $\widehat{\text{(3)}}5.0\text{pt}\widehat{\text{AB}} = 25.0\text{pt}\widehat{\text{CD}}$


해설

① $\overline{\mathrm{AB}} < 2\overline{\mathrm{CD}}$

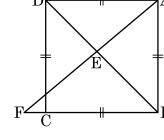

- ② $\overline{AB} = \overline{OC}$ ($\triangle OAB$ 는 정삼각형이므로 $\overline{AB} = \overline{OA} = \overline{OC}$)
- $\odot \overline{AB} < 2\overline{CD}$
- $\textcircled{4} \triangle AOB \neq 2\triangle COD$
- ⑤ 한 원에서 호의 길이와 부채꼴 넓이는 중심각의 크기에 정비
- 례한다. $60^\circ: 30^\circ = 5.0 \mathrm{pt} \widehat{AB}: 5.0 \mathrm{pt} \widehat{CD}$ 이므로, $5.0 \mathrm{pt} \widehat{AB} =$ 25.0ptĈD 이다.

15. 다음 중 정육면체의 전개도가 될 수 있는 것을 모두 고르면?(정답 2 개)

16. 다음 그림에서 △ABC 와 △ECD 가 정삼각 형일 때, △ACD 와 합동인 삼각형을 찾고 합동조건을 말하시오.

답:

 답:
 합동


 > 정답: △ BCE

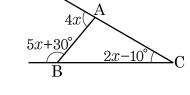
▷ 정답: SAS 합동

$\triangle ABC$ 와 $\triangle ECD$ 가 정삼각형이므로 $\overline{AC}=\overline{BC}$ 이고, $\overline{CD}=\overline{CE}$

이며 두 변과 끼인각인 ∠ACD 와 ∠BCE 가 같다. 따라서 △ACD 와 △BCE 는 SAS 합동이다. 17. 다음 그림은 정사각형 ABCD 의 대각선 \overline{BD} 위의 점 E 를 잡아 \overline{AE} 의 연장선과 \overline{BC} 의 연장선의 교점을 F 라 한 것이다. $\angle AFC = 40^\circ$ 일 때, $\angle BCE$ 의 크기를 구하여라.

D #

▷ 정답: 50_°


△AFB 에서 ∠AFC = 40° 이므로 ∠FAB = 50°

해설

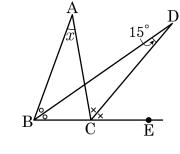
▶ 답:

따라서 ∠EAD = 40° $\overline{AB} = \overline{CB}, \overline{EB} \vdash \overline{S}, \angle CBE = \angle ABE = 45^{\circ}$ $\triangle ABE \equiv \triangle CBE(SAS합동)$ 따라서 ∠BCE = ∠BAE = 50° 이다.

18. 다음 그림에서 $\angle x$ 의 크기는?

 30° 40°

⑤ 50°


 $4x = 2x - 10^{\circ} + 180^{\circ} - (5x + 30^{\circ})$ $4x = 140^{\circ} - 3x$ $4x = 200^{\circ}$

② 20°

 $\therefore \ \angle x = 20^{\circ}$

① 10°

19. 다음 그림에서 $\angle x$ 의 크기를 구하여라.

 답:

 □

 정답:
 30 °

 $\angle DCE = \angle CBD + 15^{\circ}$

해설

 $2\angle DCE = \angle x + 2\angle CBD$ $= \angle x + 2(\angle DCE - 15^{\circ})$

 $= 2x + 2(2DCE - 15^{\circ})$ $= 2x + 22DCE - 30^{\circ}$

 $\therefore \angle x = 30^{\circ}$

20. 내각의 합과 외각의 합의 비가 5 : 1 인 다각형은?

① 십각형

② 십일각형

③ 십이각형

 ④ 십삼각형
 ⑤ 십사각형

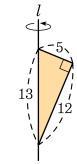
n 각형의 내각의 크기의 합 : 180° × (*n* − 2)

n 각형의 외각의 크기의 합: 360°

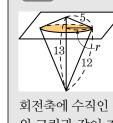
 $180^{\circ} \times (n-2) : 360^{\circ} = 5 : 1$

180° × (n - 2) = 360° × 5 = 1800° 따라서 n = 12 이므로 십이각형이다.

- 21. 모서리의 개수가 30 개인 각뿔대의 면의 개수를 구하여라.
 - <u>개</u>


▷ 정답: 12 <u>개</u>

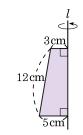
해설


n 각뿔대의 모서리의 개수는 3n 이므로 3n = 30 $\therefore n = 10$

따라서 십각뿔대의 면의 개수는 ∴ 10 + 2 = 12(개)

 $oldsymbol{22}$. 다음 그림과 같은 직각삼각형을 직선 $oldsymbol{l}$ 축으로 하여 $oldsymbol{1}$ 회전시킬 때 생 기는 회전체를 회전축에 수직인 평면으로 자를 때 생기는 단면 중에서 가장 큰 단면의 넓이는?

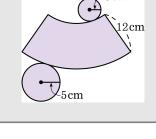
- ① $\frac{625}{36}\pi$ ② 25π ② $\frac{3600}{169}\pi$ ③ $\frac{144}{9}\pi$
- $\Im \frac{2500}{169}\pi$

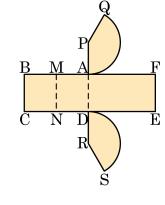


회전축에 수직인 평면으로 자를 때 단면의 넓이가 가장 큰 경우는 위 그림과 같이 자를 때이므로 원의 반지름 r의 값은 $\frac{1}{2} \times 5 \times 12 = \frac{1}{2} \times r \times 13$ $\therefore r = \frac{60}{13}$

$$\frac{1}{2} \times 3 \times 12 = \frac{1}{2} \times 7 \times 12 = \frac{1}{2} \times 1$$

 $\pi \times \left(\frac{60}{13}\right)^2 = \frac{3600}{169}\pi$ 이다,


- 23. 다음 평면도형을 직선 n을 회전축으로 회전시켰다. 이 회전체의 전개도에서 옆면의 둘레의 길이는?
 - $(16\pi + 24) \, \text{cm}$ ③ $(24\pi + 24) \text{ cm}$
- ② $(18\pi + 24) \text{ cm}$ $(16\pi + 12) \text{ cm}$
- ⑤ $(18\pi + 12) \text{ cm}$

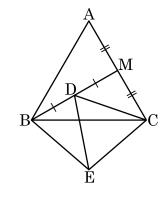

회전체의 전개도를 그리면 옆면의 둘 레의 길이는 $2\pi \times 3 + 2\pi \times 5 + 12 \times 2$

 $=\pi\times16+24$

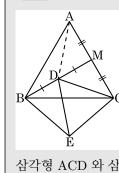
- $= 16\pi + 24 (\text{cm})$

24. 다음 그림은 어떤 입체도형의 전개도이다. 부채꼴 PAQ, RSD 에서 $\angle APQ = \angle SRD = 150^\circ$ 이고, 직사각형 ABCD 에서 점 M, N 은 각각 \overline{AB} , \overline{CD} 의 중점이다. $\overline{AB} = 12 \mathrm{cm}$, $\overline{AD} = 7 \mathrm{cm}$ 일 때, 이 입체의 부피를 구하면?

① $100\pi \text{cm}^3$ ④ $108\pi \text{cm}^3$ ② $102\pi \text{cm}^3$ ③ $110\pi \text{cm}^3$ $3105\pi \text{cm}^3$

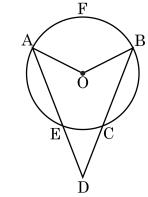

부채꼴 PAQ 의 반지름의 길이가 $6\mathrm{cm}$ 이다. 따라서 $V=\left(\pi\times 6^2\times \frac{150^\circ}{360^\circ}\right)\times 7=105\pi(\mathrm{cm}^3)$ 이다.

- 25. 다음 그림과 같이 모선의 길이가 $10 \, {
 m cm}$ 인 원 뿔을 5 바퀴 굴렸더니 처음 위치로 돌아왔다. 이 원뿔의 밑면의 반지름의 길이는?
 - ① 1 cm \bigcirc 1.5 cm (3) 2 cm
 - $\textcircled{4} \ \ 2.5 \ \ \text{cm} \qquad \textcircled{5} \ \ 3 \ \ \text{cm}$
- -10 cm

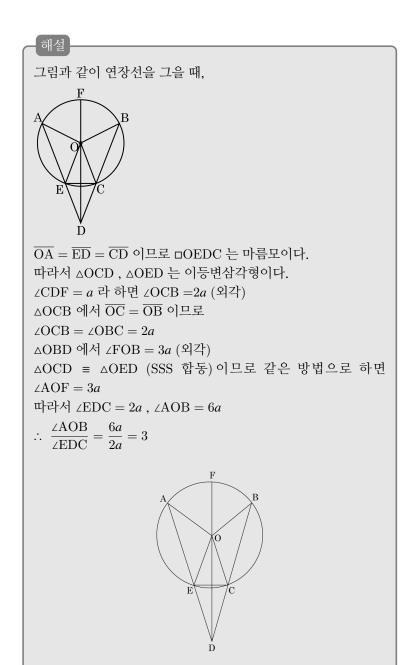

원뿔의 밑면의 반지름의 길이를 r 이라고 하면 $2\pi \times 10 = 2\pi r \times 5$

따라서 r = 2 (cm)이다.

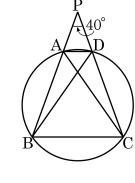
26. 다음 그림의 삼각형 ABC, CDE 는 정삼각형이고, 점 M 은 변 AC 의 중점, 점 D 는 선분 BM 의 중점이다. 이때 삼각형 ABC 의 넓이를 x, 사각형 BECD 의 넓이를 y 라 할 때, $\frac{y}{x}$ 의 값을 구하여라.


답: ightharpoonup 정답: $rac{3}{4}$

삼각형 ACD 와 삼각형 BCE 에서 $\overline{AC}=\overline{BC},\overline{CD}=\overline{CE}$ $\angle ACD = \angle ACB - \angle DCB = \angle DCE - \angle DCB = \angle BCE$ 이므로 삼각형 ACD 와 삼각형 BCE 는 SAS 합동이다. (사각형 BECD 의 넓이) $= \triangle DBC + \triangle BCE = \triangle DBC + \triangle ACD = \triangle ABC - \triangle ABD$ $\triangle ABD = \frac{1}{2} \times \triangle ABM = \frac{1}{2} \times \frac{1}{2} \triangle ABC = \frac{1}{4} \triangle ABC$


$$\therefore y = x - \frac{1}{4}x = \frac{3}{4}x \therefore \frac{y}{x} = \frac{3}{4}$$

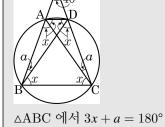
27. 다음 그림에서 점 A, E, D 는 한 직선 위에 있고, B, C, D 도 한 직선 위에 있다. $\overline{OA} = \overline{ED} = \overline{CD}$ 일 때, $\frac{\angle AOB}{\angle EDC}$ 의 값을 구하여라.



답:

➢ 정답: 3

28. 다음 그림과 같이 $\overline{AB}=\overline{BC}=\overline{CD}$ 인 사각형 ABCD 와 사각형에 외접하는 원 O 가 있다. 선분 AB, CD 의 연장선이 만나는 점 P 에 대하여 $\angle APC=40^\circ$ 일 때, $\angle BAD+\angle BCD$ 의 크기를 구하여라.

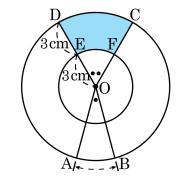

➢ 정답 : 180 _°

답:

$\overline{AB} = \overline{BC} = \overline{CD}$ 이고 $\angle ACB = x$, $\angle DBA = a$ 라 하면 한 현에

해설

대한 원주각의 크기도 같으므로 다음 그림과 같다. P A40°


 $\therefore a = 180^{\circ} - 3x \cdots \bigcirc$ $\triangle PBC \text{ odd } 40^{\circ} + 2(x+a) = 180^{\circ}$

 $\therefore x + a = 70^{\circ} \cdots \bigcirc$

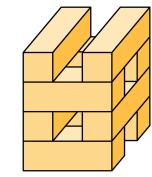
.. $x + a = 70^\circ$... © ③, ⓒ에 의해서 $x = 55^\circ$, $a = 15^\circ$

따라서 ∠BAD + ∠BCD = 110° + 70° = 180°

29. 다음 그림과 같이 중심이 일치하는 두 원에서 $\angle COD = 2\angle AOB$, $\overline{OE} = \overline{DE} = 3 \mathrm{cm}$, $5.0 \mathrm{pt} \widehat{AB} = 2 \pi \mathrm{cm}$ 일 때, 색칠한 도형의 둘레의 길이는?

① $(6+6\pi)$ cm ② $(6+8\pi)$ cm

(4) $(6+12\pi)$ cm (5) $(6+13\pi)$ cm

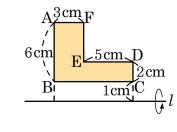

 $3 (6+10\pi)$ cm

 $\angle AOB = x$ 라 하면 $2\pi \times 6 \times \frac{x}{360^{\circ}} = 2\pi \text{(cm)}$ $\therefore x = 60^{\circ}, \angle DOC = 120^{\circ}$

 $5.0 \text{pt} \widehat{\text{CP}} = 2\pi \times 3 \times \frac{120^{\circ}}{360^{\circ}} = 2\pi (cm)$ $5.0 \text{pt} \widehat{\text{CD}} = 2\pi \times 6 \times \frac{120^{\circ}}{360^{\circ}} = 4\pi (\text{cm})$

(둘레의길이) = $2\pi + 4\pi + 3 \times 2 = 6\pi + 6$ (cm)

30. 다음은 모서리의 길이가 각각 3,1,1인 직육면체 모양 블록 8개를 쌓아 만든 모양이다. 이 도형의 겉넓이를 구하여라.


답:▷ 정답: 88

해설

블록 1 개의 겉넓이는 2 × (1 + 3 + 3) = 14

두 블록이 닿아있는 부분 1곳의 넓이는 $1 \times 1 = 1$ 두 층 사이에서 맞닿아 있는 부분은 4부분, 두 층이 맞닿은 곳은 3군데이므로 맞닿은 부분의 넓이는 $1 \times 3 \times 4 = 12$ ∴ (겉넓이) = $14 \times 8 - 12 \times 2 = 112 - 24 = 88$

31. 다음 그림과 같은 평면도형을 직선 l을 회전축으로 하여 1 회전시켰을 때 생기는 회전체의 겉넓이를 $A \, \mathrm{cm}^2$, 부피를 $B \, \mathrm{cm}^3$ 라 할 때, A : B는?

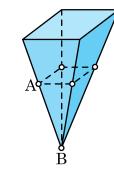
② 1:2 ③ 2:3 ④ 2:5 ⑤ 3:2

회전체의 겉넓이는

 $S = (7^2 - 1^2)\pi \times 2 + (2\pi \times 3 \times 5 + 2\pi \times 7 \times 3 + 2\pi \times 1 \times 8)$ $= 48\pi \times 2 + 30\pi + 42\pi + 16\pi$

 $= 184\pi (\,\mathrm{cm}^2)$

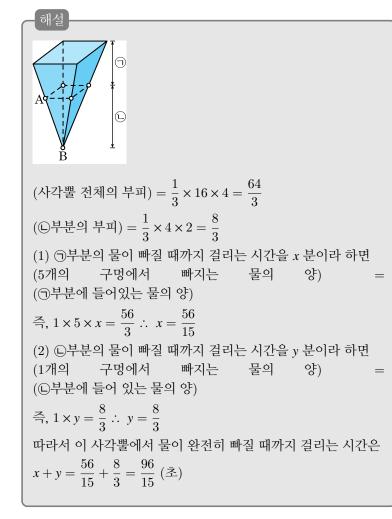
이고,

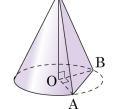

1:1

해설

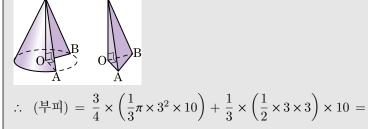
회전체의 부피는 아래 원기둥의 부피 + 위 원기둥의 부피 -안쪽 원기둥의 부피 이므로 $7^2\pi \times 3 + 3^2\pi \times 5 - 1^2\pi \times 8 = 147\pi + 45\pi - 8\pi = 184\pi (\,\mathrm{cm}^3)$

이다. 따라서 $A: B = 184\pi: 184\pi = 1:1$ 이다.


32. 다음과 같이 밑면의 넓이가 16cm^2 , 높이가 4 cm 인 사각뿔 모양의 그릇의 중간 높이인 평면 A 부분에 각 꼭지점마다 4 개의 구멍을 뚫고, 아래쪽 꼭짓점인 B 에 1 개의 구멍을 뚫었다. 각 구멍에서 1 초에 1cm^3 씩 일정한 속도로 물이 빠져나온다면, 이 그릇의 물이 완전히 빠질 때까지의 시간을 구하여라.


답:

<u>초</u>


▷ 정답: ⁹⁶/₁₅초

33. 다음 그림은 밑면의 반지름의 길이가 $3 \, \text{cm}$ 높이가 $10\,{
m cm}$ 인 원뿔을 밑면의 둘레 위의 두 점 A, B 와 꼭짓점 C 를 지나는 평면으로 잘라서 만든 것이 다. 이 입체도형의 부피는?

- $\bigcirc \left(\frac{45}{2}\pi + 15\right) \text{ cm}^3$
- ② $(15\pi + 15) \,\mathrm{cm}^3$
- $3 (18\pi + 15) \text{ cm}^3$
- $(45\pi + 18) \text{ cm}^3$ $(15\pi + 12) \text{ cm}^3$
- 주어진 입체도형의 부피는 다음 그림의 두 입체도형의 부피의 합과 같다.

$$\frac{45}{2}\pi + 15(\text{ cm}^3)$$