
$\angle A: \angle B=2:1$ 이다. $\overline{AB}=\overline{BE}$ 일 때, \overline{AE} 의 길이를 구하여라.

다음 그림과 같은 평행사변형 ABCD 에서

$$\underline{\mathrm{cm}}$$

$$\angle A = 180^{\circ} \times \frac{2}{3} = 120^{\circ}$$

$$\angle B = 180^{\circ} \times \frac{1}{3} = 60^{\circ}$$

$$\overline{\mathrm{AB}} = \overline{\mathrm{BE}}$$
 이므로

∠BAE = ∠BEA = (180° - 60°) ÷ 2 = 60° ∴ △ABE 는 정삼각형이다.

$$\therefore \overline{AE} = \overline{AB} = 8 \text{ (cm)}$$

2. T

마름모 ABCD 의 한 꼭짓점 A에서 \overline{BC} , \overline{CD} 위에 내린 수선의 발을 각각 P, Q 라할 때, $\angle PAQ = 60^{\circ}$ 일 때, $\angle APQ = ($)°

P Q D

이다. () 안에 알맞은 수를 구하여라.

답:

➢ 정답: 60

$$\angle B = \angle D$$
 이고, $\overline{AB} = \overline{AD}$,

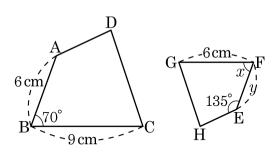
∠APB = ∠AQD = 90° △APB ≡ △AQD (RHA 합동)→ $\overline{AP} = \overline{AQ}$ 이므로 △APQ 는

이등변삼각형이다.

 $\angle APQ = \frac{180^{\circ} - 60^{\circ}}{2} = 60^{\circ}$ 이다.

- 3. 다음 설명하는 사각형은 어떤 사각형인가?
 - ⊙ 네 변의 길이가 모두 같다.
 - ⑥ 네 내각의 크기가 모두 같다.
 - © 두 대각선의 길이가 같다.
 - ② 두 대각선이 서로 수직이등분한다.
 - ① 사다리꼴

② 등변사다리꼴

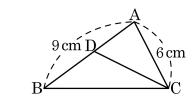

③ 정사각형

④ 마름모

⑤ 직사각형

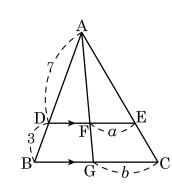
해설

정사각형은 네 변의 길이와 네 내각의 크기가 모두 같고, 두 대각선의 길이가 같고 서로 수직이등분한다. 4. 다음 그림에서 $\Box ABCD \odot \Box EFGH$ 일 때, $\angle EFG = x^{\circ}$, $\overline{EF} = ycm$ 라할 때, x - 2y의 값을 구하면?


① 78 ② 72 ③ 70 ④ 62 ⑤ 60

대응각의 크기는 같으므로,
$$\angle F = \angle B$$

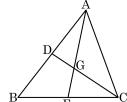
 $\therefore \ \angle x = 70^\circ$
 $\overline{AB}: \overline{EF} = \overline{BC}: \overline{FG}$ 이므로 $6: y = 3: 2$
 $3y = 12$
 $\therefore \ y = 4$


 $\therefore x - 2y = 70 - 2 \times 4 = 62$

해설

5. 다음 그림에서 ∠ACD = ∠ABC , $\overline{AB} = 9 \mathrm{cm}$, $\overline{AC} = 6 \mathrm{cm}$ 일 때, \overline{AD} 의 길이는?

AB: AC = AC: AD 9:6=6: AD, 9AD = 36이므로 AD = 4(cm)이다. **6.** 다음 그림에서 $\overline{BC}//\overline{DE}$ 이고, $\overline{AD}=7$, $\overline{BD}=3$ 일 때, a 를 b 에 관한 식으로 나타내면?


①
$$a = \frac{4}{7}b$$
 ② $a = \frac{7}{3}b$ ③ $a = \frac{5}{4}b$
② $a = \frac{7}{10}b$

해설

 $\overline{AD}: \overline{AB} = \overline{AF}: \overline{AG} = 7: (7+3) = 7:10 \cdots$ 또, $\overline{BC}//\overline{DE}$ 이면 $\overline{GC}//\overline{FE}$ 이므로

 \overline{AF} : \overline{AG} = \overline{EF} : \overline{CG} = a: b ··· \bigcirc \bigcirc , \bigcirc \triangleleft \triangleleft \triangleleft a: b = 7: 10

10a = 7b 이므로 $a = \frac{7}{10}b$ 이다.

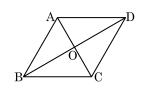
(5) 8cm

4 6cm

점 G가
$$\triangle$$
ABC의 무게중심이므로 $\overline{\text{CG}}:\overline{\text{GD}}=2:1$
 $\therefore \overline{\text{GD}}=\frac{1}{3}\overline{\text{CD}}=\frac{1}{3}\times 12=4\,\text{(cm)}$

삼각형 ABC에서 D, E는 \overline{AB} , \overline{BC} 의 중점 이고 $\overline{CD} = 12 \text{cm}$ 일 때. \overline{GD} 의 길이를 구하

서리가 4cm 인 정육면체 모양의 주사위를 만들려고 한다. 주사위는 모두 몇 개 만들 수 있겠는가?


한 모서리의 길이가 60 cm 인 정육면체 모양의 나무를 잘라서 한 모

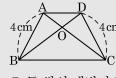
③ 3375 개 ② 3000 개 2744 개 ⑤ 4096 개

60:4=15:1

④ 3885 개

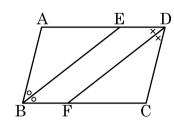
 $15^3:1^3=3375:1$: 주사위는 3375 개 만들 수 있다. 9. 다음 그림의 □ABCD 가 항상 평행사변형이 되기 위한 조건으로 옳지 <u>않은</u> 것을 보기에 서 골라라.

보기 -


- $\ \, \bigcirc \ \, \overline{AB} = \overline{DC} = 4\,\mathrm{cm}$, $\overline{AD} = \overline{BC} = 6\,\mathrm{cm}$
- \bigcirc $\angle A = 110\,^{\circ}$, $\angle B = 70\,^{\circ}$, $\angle D = 70\,^{\circ}$
- © $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$ (단, 점 O는 두 대각선의 교점)
- $\ \ \ \ \overline{\rm AD}//\overline{\rm BC}$, $\overline{\rm AB}=\overline{\rm DC}=4\,{\rm cm}$
- $\ \ \ \ \ \overline{\rm AD}//\overline{\rm BC}$, $\overline{\rm AB}//\overline{\rm DC}$
- ▶ 답:
- ▷ 정답 : ②

해설

- ⊙ 두 쌍의 대변의 길이는 같으므로 평행사변형이 된다.
- 대각의 크기가 같으므로 평행사변형이 된다.
- © 두 대각선이 서로 다른 것을 이등분하므로 평행사변형이 된다.

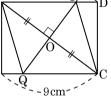

© 사각형의 내각의 합은 360° 이므로 ∠C = 110° 이다. 두 쌍의

② (반례) 등변사다리꼴

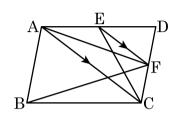
⑤ 두 쌍의 대변이 각각 평행하므로 평행사변형이 된다.

10. 다음 그림과 같은 평행사변형 ABCD 에서 ∠B 와 ∠D 의 이등분선이 \overline{AD} , \overline{BC} 와 만나는 점을 각각 E,F 라 할 때, 다음 보기 중에서 옳은 것은 모두 몇 개인가?

 \bigcirc $\overline{AB} = \overline{AE}$ \bigcirc $\overline{ED} = \overline{BF}$ \bigcirc $\overline{AE} = \overline{DC}$


 \bigcirc $\angle AEB = \angle DFC$ \Box $\angle ABE = \angle FDC$

① 2 개 ② 3 개 ③ 4 개 ④ 5 개


해설

사각형 BEDF 는 평행사변형이고. \triangle ABE = \triangle CDF 이므로 \bigcirc ~ \bigcirc 모두 옳다. 11. 다음 그림과 같은 평행사변형 ABCD 에서 p.2cm $\overline{AC} \perp \overline{PQ}$, $\overline{AO} = \overline{CO}$ 일 때, $\Box AQCP$ 의 둘 레의 길이는? $27 \,\mathrm{cm}$ $28\,\mathrm{cm}$ \bigcirc 26 cm

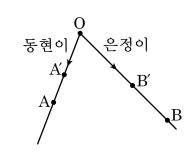
지민
$$\overline{AQ} = \overline{AP} = \overline{PC} = \overline{QC}$$
 $\overline{AP} = 9 - 2 = 7$ 따라서 $28 \, \mathrm{cm}$ 이다.

12. 다음 그림의 평행사변형 ABCD에서 \overline{AC} $/\!/\!/\,\overline{EF}$ 이고 ΔBCF 의 넓이가 $15 cm^2$ 일 때, ΔACE 의 넓이는?

 $(3) 25 \text{cm}^2$

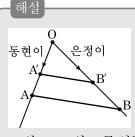
 15cm^2

- 20cm^2
- $4 30 \text{cm}^2$ $5 35 \text{cm}^2$


해설

 $\overline{AB} // \overline{DC}$ 이므로 밑변과 높이가 같아 $\Delta BCF = \Delta ACF$ 이고,

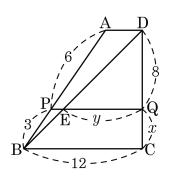
 \overline{AC} $// \overline{EF}$ 이므로 밑변과 높이가 같아 $\triangle ACF = \triangle ACE$


 $\therefore \triangle ACE = 15(cm^2)$

13. 동현이와 은정이는 다음 그림에서 출발점 O 에서 A, B 방향으로 각각 분속 3m/min, 5m/min 의 속력으로 달릴 때, 15 분 후의 동현이와 은정이의 위치를 각각 A', B' 이라고 하자. A' 과 A 사이의 거리가 15m 일 때, B' 과 B 사이의 거리는?

① 15m \bigcirc 20m 25m

(4) 30m (5) 35m



A'와 B', A 와 B 를 잇는 선을 그으면 동현이와 은정이의 속력은 일정하므로 두 선이 평행이다.

 $\overline{OA'} = 45$ m, $\overline{OB}' = 75$ m 이므로 $3:5 = 15:\overline{B'B}$ 이다. 따라서

B' 과 B 사이의 거리는 25m 이다.

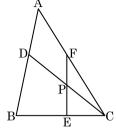
14. 다음 그림에서 $\overline{\mathrm{AD}} / / \overline{\mathrm{PQ}} / / \overline{\mathrm{BC}}$ 일 때, x + y 의 값은?

3

4 13

⑤ 14

6:3=8:x


$$x = 4$$

6:9 = y:12
 $y = 8$

$$\therefore x + y = 12$$

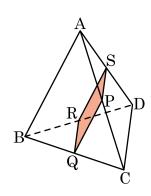
15. 다음 그림의 △ABC 에서 ĀD : DB = 3 : 4, BE : EC = 4 : 3, CF : FA = 4 : 3 이 다. FP = 5 cm, PC = 8 cm 일 때, DP 와 PE 의 길이의 차를 구하여라.

P

cm

 답:

 ▷ 정답:
 3 cm

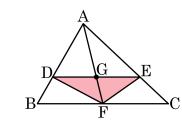

해설

DF // BC, DE // AC 이므로

 $\square DECF$ 는 평행사변형이다. $\overline{DP} = \overline{PC} = 8 \, \mathrm{cm}$

 $\frac{\overline{PE}}{\overline{DP}} = \frac{\overline{FP}}{\overline{PE}} = 5 \text{ cm}$ $\frac{\overline{DP}}{\overline{PE}} = 8 - 5 = 3 \text{ (cm)}$

16. 한 변의 길이가 5인 정사면체 A – BCD의 각 모서리의 중점을 연결해서 만든 □PQRS의 둘레의 길이는?



 ① 6
 ② 7
 ③ 8
 ④ 9
 ⑤ 10

$$\overline{PQ} = \overline{QR} = \overline{PS} = \overline{SR} = \frac{1}{2}\overline{AB} = \frac{1}{2} \times 5 = \frac{5}{2}$$
이므로 ($\Box PQRS$ 의 둘레의 길이)
$$= \overline{PQ} + \overline{SR} + \overline{QR} + \overline{PS}$$
$$= 4 \times \frac{5}{2} = 10$$
이다.

17. 다음 그림의 $\triangle ABC$ 에서 점 G는 무게중심이고, \overline{DE} 와 \overline{BC} 는 평행이다.

 $\overline{\mathrm{BF}}=4\mathrm{cm}, \overline{\mathrm{GF}}=3\mathrm{cm}, \Delta \mathrm{ABC}=54\mathrm{cm}^2$ 일 때, $\Delta \mathrm{DEF}$ 의 넓이는?

 $3 18 cm^2$

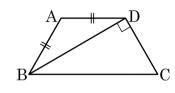
① $10cm^2$

- 12cm^2
- 30cm^2

 $4) 27 \text{cm}^2$

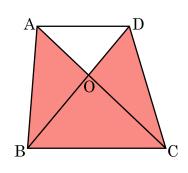
$$\triangle ACF = \frac{1}{2} \triangle ABC = 27 (\text{ cm}^2)$$
 $\triangle ACF$ 에서 $\overline{AE} : \overline{CE} = 2 : 1$ 이므로,

$$\triangle AEF = \frac{2}{3} \triangle ACF = 18 \text{ (cm}^2\text{)}$$


$$\triangle AEF$$
에서 $\overline{AG}:\overline{GF}=2:1$ 이므로,

$$\triangle GFE = \frac{1}{3} \triangle AEF = 6 \text{ (cm}^2\text{)}$$

마찬가지로, $\triangle DGF = 6$: $\triangle DEF = 12(cm^2)$


18. 다음 그림과 같은 등변사다리꼴 ABCD에서 $\overline{AB} = \overline{AD}$, $\angle BDC = 90^{\circ}$

일 때, ∠C의 크기를 구하여라.

$$\angle ADB = \angle DBC = \frac{1}{2}\angle C$$

$$\frac{1}{2}\angle C + \angle C = 90$$
 °이므로, $\angle C = 60$ °

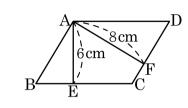
19. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 $\triangle ABD$ 의 넓이가 90 일 때, 색칠한 부분의 넓이를 구하여라. (단, $3\overline{DO}=2\overline{BO}$)

▶ 답:

▷ 정답: 189

해설____

△AOD : △AOB = 2 : 3 이므로

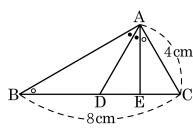

 $\triangle AOB = \frac{3}{5} \times \triangle ABD = 54$

이때 $\triangle ABD = \triangle ACD$ 이므로 $\triangle AOB = \triangle COD = 54$

또, △COD : △BCO = 2 : 3 이므로 54 : △BCO = 2 : 3 ∴ △BCO = 81

(색칠한부분의 넓이) = 54 + 54 + 81 = 189

 ${f 20}.$ 평행사변형 ABCD 의 꼭짓점 A 에서 변 BC, CD 에 내린 수선의 발을 각각 E, F 라 할 때, $\overline{AB}:\overline{AD}$ 를 구하라.



 $\overline{AE} : \overline{AF} = 6 : 8 = 3 : 4$

 $\therefore \overline{AB} : \overline{AD} = 3 : 4$

21. 다음 그림에서 ∠ABC = ∠CAE, ∠BAD = ∠DAE 이고 AC = 4cm, BC = 8cm 일 때. BD 의 길이를 구하여라.

l, BD 의 길이를 구하여리

cm

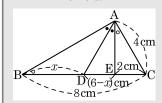
▶ 답:

▷ 정답: 4 cm

해설

ΔCAE 와 ΔCBA 에서 ∠C 가 공통, ∠ABC = ∠CAE 이므로

△CAE∽△CBA (AA 닮음)

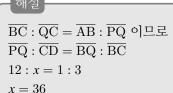

 $\overline{AC}^2 = \overline{CE} \times \overline{CB}$ $4^2 = \overline{CE} \times 8$

 $\overline{CE} = 2cm$ 또한, $\overline{BC} : \overline{BA} = \overline{AC} : \overline{AE}$ 에서

또한, BC : BA = AC : AE G

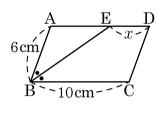
 $\overline{AB} \times \overline{AC} = \overline{BC} \times \overline{AE}$ $4\overline{AB} = 8\overline{AE} \rightarrow \overline{AB} : \overline{AE} = 2 : 1$

 $\overline{BD} = x$ 라 하면 $\overline{DE} = 6 - x$ 이므로


 ΔABE 에서 삼각형의 내각의 이등분선의 정리에 의해 \overline{AB} :

 $\overline{AE} = \overline{BD} : \overline{DE}$ 2:1 = x: (6 - x)

2:1=x:(0-x) $\therefore x=4$


따라서 $\overline{BD} = 4$ cm 이다.

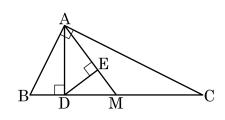
22. 다음과 같이 \overline{AB} 와 \overline{PQ} 와 \overline{DC} 가 평행하고 , $\overline{AB} = 18, \overline{PQ} = 12$ 일 때, x 의 값은? ① 24 ② 30 ③ 36 ④ 42 ⑤ 48

23. 다음 그림에서 사각형 ABCD가 평행사변형이고, \angle ABE = \angle EBC일

때, 선분 x의 길이는?

① 2cm

② 3cm


③ 3.5cm

4cm

⑤ 4.5cm

24. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{BM}=\overline{CM}$ 이고, 점 A 에서 내린 \overline{BC} 에 내린 수선의 발을 D , 점 D 에서 \overline{AM} 에 내린 수선의 발을 E 라 하고, $\overline{BD}=6$, $\overline{DC}=24$ 일 때 \overline{DE} 의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $rac{36}{5}$

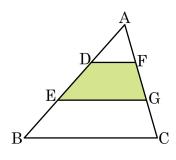
해설

 $\overline{AADD} \circ \overline{ACAD} (\overline{AA} \ \overline{aa} = \overline{ba})$ 따라서 $\overline{AB} : \overline{CA} = \overline{BD} : \overline{AD} = \overline{AD} : \overline{CD} 를 이용하여 <math>\overline{AD}$ 를

 $6: \overline{AD} = \overline{AD}: 24$ $\overline{AD} = 12 \ (\because \overline{AD} > 0)$

AD = 12 (∵ AD > 0) ∠A 가 90° 이므로 △ABC 는 직각삼각형이다. △ABC 의 빗변의

중심 M 은 곧 \triangle ABC 의 외심이므로


 $\overline{AM} = \overline{BM} = \overline{CM} = 15$

 $\overline{\rm DM} = \overline{\rm BM} - \overline{\rm BD} = 15 - 6 = 9$ $\angle {\rm AED} = 90^{\circ}$, $\angle {\rm AMD} = \angle {\rm ADE}$ 이므로 $\triangle {\rm ADE} \hookrightarrow \triangle {\rm AMD}$ (AA

닮음)

따라서 \overline{AD} : $\overline{AM} = \overline{DE}$: $\overline{MD} = \overline{AE}$: \overline{AD} 를 이용하여 \overline{DE} 를 구하면 $12:15 = \overline{DE}:9$ 이므로 $\overline{DE} = \frac{12 \times 9}{15} = \frac{36}{5}$ 이다.

25. 다음 그림과 같이 넓이가 180 인 삼각형 ABC 에서 변 AB, AC 의 삼등분점을 각각 D 와 E, F 와 G 라 할 때, 사각형 DEGF 의 넓이를 구하여라.

▶ 답:

➢ 정답: 60

해설

 $\triangle {
m ADF}$ \hookrightarrow $\triangle {
m AEG}$ \hookrightarrow $\triangle {
m ABC}$ 이고 닮음비는 1:2:3 이므로 넓이

비는 1 : 4 : 9 이다. 삼각형 ADF 의 넓이를 S 라 하면 △AEG = 4S, △ABC = 9S

이므로 9S = 180, S = 20

사각형 DEGF 의 넓이는 $4S - S = 3S = 3 \times 20 = 60$