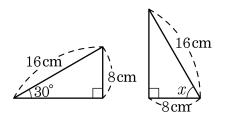
1. 다음 두 직각삼각형의 합동조건을 쓰고 $\angle x$ 의 크기를 구하여라.



합동

답:

▶ 답:

▷ 정답 : RHS 합동

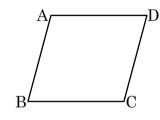
➢ 정답: 60 °

해설

한 각이 직각(R)이고, 빗변의 길이(H)가 같고, 다른 한 변의 길이(S)가 같으므로, RHS 합동

 $\therefore \angle x = 90^{\circ} - 30^{\circ} = 60^{\circ}$

2. 다음 평행사변형 ABCD 에서 ∠A 와 ∠B 의 크기의 비가 7 : 5 일 때, ∠C 의 크기를 구하여라.

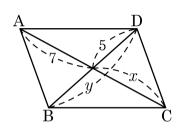


해설

$$\angle A = 180^{\circ} \times \frac{7}{12} = 105^{\circ}$$

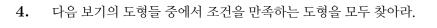
 $\angle C = \angle A = 105^{\circ}$

3. 다음 그림에서 $\overline{AO} = 7, \overline{DO} = 5$ 일 때, □ABCD가 평행사변형이 되도록 하는 x+y의 값을 구하여라.



해설

$$x = 7, y = 5 \times 2 = 10$$
이므로
 $x + y = 17$



- 두 대각선이 서로 다른 것을 이등분한다.
- · 두 대각선이 내각을 이등분한다.

보기

⊙ 평행사변형

⑥ 직사각형

ⓒ 마름모

② 정사각형

◎ 등변사다리꼴

답:

▶ 답:

▷ 정답: ⑤

▷ 정답: ②

해설

두 대각선이 서로 다른 것을 이등분하는 것은 평행사변형, 직사 각형, 마름모, 정사각형이다.

두 대각선이 내각을 이등분하는 것은 마름모, 정사각형이다. 모든 조건을 다 만족하는 것은 마름모와 정사각형이다.

⊙ 두 정육면체

ⓒ 두구

© 두 원기둥

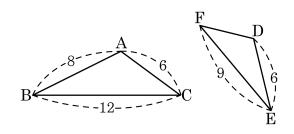
② 두 삼각뿔

◎ 두 육각기둥

- ▶ 답:
- 답:
- ▷ 정답 : ⑤
- ▷ 정답: □

해설

정육면체는 모든 면이 정사각형으로 이루어져 있으므로 항상 닮은 도형이고, 구는 항상 모양이 일정하고 일정한 비율로 확대, 축소되므로 항상 닮은 도형이다. 6. 다음 두 도형이 닮음이 되도록 할 때, 필요한 조건을 고르면?



① $\overline{\text{FD}} = 4$

 \bigcirc $\overline{\text{FD}} = 4.5$

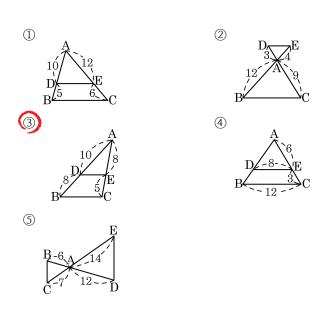
 $\Im \angle A = \angle E$

 \bigcirc $\angle A = \angle D, \overline{FD} = 4$

해설

② $\overline{\mathrm{FD}}=4.5$ 이면, SSS 닮음 조건을 만족하여 두 도형의 닮음비 는 4:3이 된다.

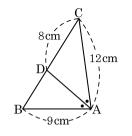
7. 다음 중 변 \overline{BC} 와 \overline{DE} 가 평행하지 <u>않은</u> 것은?



③ 10:18≠8:13이므로

변 BC 와 DE 가 평행하지 않는다.

8. 다음 그림에서 $\overline{\rm AD}$ 가 $\angle {\rm A}$ 의 이등분선이고, $\Delta {\rm ABC}=63{\rm cm}^2$ 일 때, $\Delta {\rm ABD}$ 의 넓이를 구하여라.



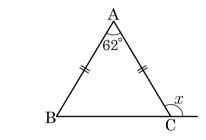
▷ 정답: 27 cm²

단:

ΔABD 와 ΔACD 의 밑변의 길이의 비는 9: 12 = 3: 4 이고 높이는 서로 같으므로 넓이의 비도 3: 4 이다. 전체 넓이가 63 cm² 이므로 ΔABD 의 넓이는 27cm² 이다.

 $\underline{\mathrm{cm}}^2$

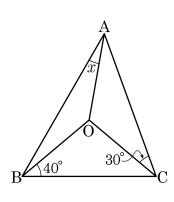
9. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC 에서 $\angle A = 62^\circ$ 일 때, $\angle x$ 의 크기는?



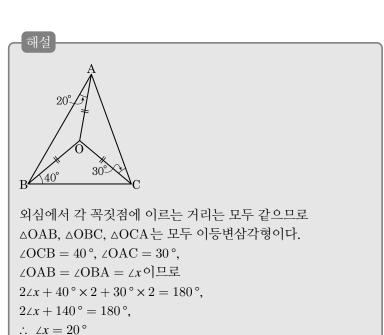
$$\angle ACB = \frac{1}{2}(180^{\circ} - 62^{\circ}) = 59^{\circ}$$

 $\therefore \angle x = 180^{\circ} - 59^{\circ} = 121^{\circ}$

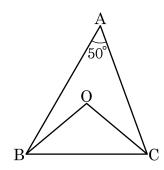
10. 다음 그림에서 점 O는 △ABC의 외심이다. ∠OBC = 40°, ∠ACO = 30°일 때, ∠x의 크기는?



① 15° ② 20° ③ 25° ④ 30° ⑤ 40°

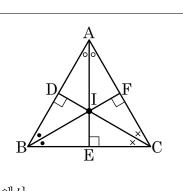


11. 다음 그림에서 점 O는 ΔABC의 외심이다. ∠A = 50°일 때, ∠BOC 의 크기를 구하면?



①
$$110^{\circ}$$
 ② 100° ③ 105° ④ 95° ⑤ 115°

12. 다음은 삼각형의 세 내각의 이등분선이 한 점에서 만남을 나타낸 것이다. 빈칸에 공통으로 들어갈 알맞은 것을 고르면?



△IBE와 △IBD에서 $\angle IEB = \angle IDB = 90^{\circ}$.

IB는 공통변.

∠IBE = ∠IBD 이므로 △IBE ≡ △IBD (RHA 합동)

 $\therefore \overline{\mathrm{ID}} = \boxed{\cdots}$

같은 방법으로 $\triangle ICE = \triangle ICF (RHA 합동) 이므로$

 \therefore = $\overline{\text{IF}} \cdots \bigcirc$

①. □에서

 $\therefore \overline{ID} = \overline{IF}$

△ADI와 △AFI에서

 $\angle ADI = \angle AFI = 90$ °, \overline{AI} 는 공통 변, $\overline{ID} = \overline{IF}$

이므로 △ADI ≡ △AFI(RHS 합동)

대응각 $\angle DAI = \angle FAI$ 이므로 \overline{AI} 는 $\angle A$ 의 이등분선이다. 따라서 세 각의 이등분선은 한 점에서 만난다.

① <u>IA</u>

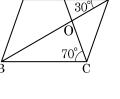
 $\overline{\text{3}}$ $\overline{\text{IC}}$ $\overline{\text{4}}$ $\overline{\text{IB}}$ $\overline{\text{5}}$ $\overline{\text{AF}}$

△IBE ≡ △IBD(RHA 합동)이므로

 $\overline{\text{ID}}$ 와 대응변인 $\overline{\text{IE}}$ 의 길이가 같고, $\Delta \text{ICE} = \Delta \text{ICF}(\text{RHA 합동})$

이므로 IE와 대응변인 IF의 길이가 같다. 따라서 빈 칸에 공통으로 IE가 들어간다.

13. 평행사변형 ABCD 에서 ∠BCO = 70°, ∠EDO = 30° 일 때, ∠DOC 의 크기는?

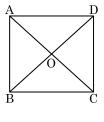


∠BCO = ∠DEO (엇각) △DEO 에서 ∠DOC 는 한 외각이므로 ∠DOC = ∠DEO + ∠EDO = 70° + 30° = 100° 14. 다음 그림의 평행사변형 ABCD 에서 ∠DAC = 70°, ∠DBC = 20°일 때, ∠BDC 의 크기는?

①
$$10^{\circ}$$
 ② 20° ③ 30° ④ 40° ⑤ 50°

15. 다음 그림의 직사각형 ABCD 가 정사각형이 되 도록 하는 조건이 <u>아닌</u> 것을 고르면?

- ① $\overline{AB} = \overline{BC}$ 이다.
- ② ∠A + ∠C = 180° 이다.
 - ③ ∠AOB = 90°이다.
 - ④ ∠AOD + ∠BOC = 180°이다.
 - ⑤ $\overline{AO} \perp \overline{BD}$ 이다.



해설 직사각형이 정사각형이 되기 위해서는 $\overline{AB} = \overline{BC}$ 이거나, 두

대각선이 서로 수직이등분하는 것이다. 하지만 $\angle A + \angle C = 180^{\circ}$ 는 조건이 아니다.

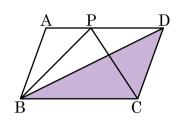
16. 다음 설명 중 옳은 것은?

- ① 이웃하는 두 변의 길이가 같은 사각형은 마름모이다.
- ② 두 대각선이 서로 다른 것을 수직 이등분하는 사각형은 정사각형이다.
- ③ 두 대각선의 길이가 같은 사각형은 직사각형이다.
- ④ 두 대각선이 서로 수직인 직사각형은 정사각형이다.
- ⑤ 등변사다리꼴은 평행사변형이다.

해설

④ 직사각형에서 두 대각선이 서로 수직이면 정사각형이 된다.

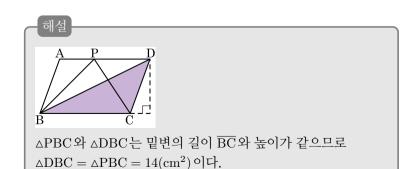
17. 다음 그림과 같이 □ABCD가 평행사변형이고 ΔPBC = 14cm² 일 때, 어두운 부분의 넓이는?



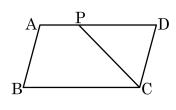
 $3 15 \text{cm}^2$

 \bigcirc 13cm²

- ②14cm²
- $4 16 cm^2$ $5 17 cm^2$



18. 다음 평행사변형 ABCD 에서 \overline{AP} : \overline{PD} = 1 : 2 이다. □ABCP 의 넓이는 ΔPCD 의 넓이의 몇 배인가?



배

▶ 답:

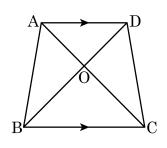
▷ 정답: 2 <u>배</u>

$$\triangle PCD = \frac{1}{2} \Box ABCD \times \frac{2}{3} = \frac{1}{3} \Box ABCD$$

$$\Box ABCP = \Box ABCD - \triangle PCD = \frac{2}{3} \Box ABCD$$

 $\therefore \Box ABCP = 2\triangle PCD$

19. 다음 그림의 등변사다리꼴 ABCD에 대한 설명 중 옳지 <u>않은</u> 것은?



- ① $\overline{AC} = \overline{DB}$
- $\overline{AB} = \overline{DC}$
- ③ (△ABD의 넓이) = (△DCA의 넓이)
- $\textcircled{4} \ \triangle ABC \equiv \triangle DCB$
- ⑤ △OBC 는 정삼각형이다.

해설

② 등변사다리꼴의 성질

①, ④ △ABC와 △DCB에서

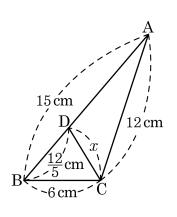
 $\overline{AB} = \overline{DC}$ 이고, \overline{BC} 는 공통,

 $\angle B = \angle C$ 이므로 $\triangle ABC \equiv \triangle DCB(SAS합동)$ ∴ $\overline{AC} = \overline{DB}$

③ △ABD 와 △DCA 에서 AD // BC 이고 밑변 AD는 공통이므로

(ΔABD의 넓이) = (ΔDCA의 넓이)

20. 다음 그림에서 x 의 길이를 구하여라.



답:

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $\frac{24}{5}$ $\underline{\text{cm}}$

해설

 $\overline{AB} : \overline{CB} = \overline{BC} : \overline{BD} = 5 : 2$ $\angle B = \overline{BC} : \overline{BD} = 5 : 2$

 \triangle ABC \hookrightarrow \triangle CBD(SAS 닮음) 15:6=12:x

 $x = \frac{24}{5} (\text{cm})$

 21. 다음 그림과 같은 평행사변형 ABCD 에서
 F

 ∠C 의 이등분선이 AD 와 BA 의 연장선
 과 만나는 점을 각각 E,F 라 하자. AB = 3 cm, BC = 7 cm 일 때, AF 의 길이를 구하 여라.

답: <u>cm</u>

정답: 4 cm

[해설] ----

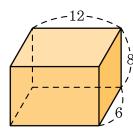
 $\overline{\mathrm{BF}}//\overline{\mathrm{CD}}$ 이므로 $\angle\mathrm{AFE} = \angle\mathrm{ECD}$ (엇각) $\Delta\mathrm{FBC}$ 에서 $\angle\mathrm{BFC} = \angle\mathrm{BCF}$ 이므로 $\Delta\mathrm{FBC}$ 는 $\overline{\mathrm{BF}} = \overline{\mathrm{BC}}$ 인

이등변삼각형이다.

따라서 $\overline{BF} = \overline{BC} = 7(\text{cm})$ 이므로

 $\overline{AF} = \overline{BF} - \overline{AB} = 7 - 3 = 4(\text{cm})$

22. 다음 그림과 같은 직육면체와 닮음이고 한 모서리의 길이가 4 인 직육면체를 만들려고 한다. 이 때, 새로 만드는 직육면체의 모서리가 될수 없는 것은?



① 2 ② 3 ③ $\frac{8}{3}$ ④ $\frac{10}{3}$ ⑤ $\frac{16}{3}$

해설

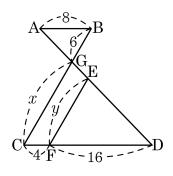
1) $3:4:6=x:y:4 \implies 2:\frac{8}{3}:4$

2) $3:4:6 = x:4:y \implies 3:4:6$ 3) $3:4:6 = 4:x:y \implies 4:\frac{16}{3}:8$

세 가지 경우이다. 따라서 미서리가 된 스 어느 거 0 10 olr

따라서 모서리가 될 수 없는 것은 $\frac{10}{3}$ 이다.

23. 다음 그림에서 \overline{AB} // \overline{CD} , \overline{EF} // \overline{GC} 일 때, x+y 의 값은?



- ① 26

- ③ 28 ④ 29 ⑤ 30

해설

 $\overline{AB} /\!/ \overline{CD}$ 이므로 $\overline{AB} : \overline{CD} = \overline{GB} : \overline{GC}$

8:20=6:x

2x = 30 : x = 15

 $\overline{\mathrm{EF}} / / \overline{\mathrm{GC}}$ 이므로 $\overline{\mathrm{DF}} : \overline{\mathrm{DC}} = \overline{\mathrm{EF}} : \overline{\mathrm{GC}}$

16:20=y:15

5y = 60 : y = 12

 $\therefore x + y = 15 + 12 = 27$