1. 다섯 개의 자료 75,70,65,60,x의 평균이 70일 때, x의 값은?

① 70 ② 75 ③ 80 ④ 85 ⑤ 90

평균이 70이므로 $\frac{75+70+65+60+x}{5} = 70$ 270+x=350

 $\therefore x = 80$

해설

2. 다음 표는 석진이의 국어, 수학, 영어, 과학 시험의 성적이다. 수학점 수, 분산을 각각 구하여라.

과목명	폭역	누약	생어	4억
점수(점)	87		88	80
편차	2		3	-5

▶ 답: 점 ▶ 답:

정답: 수학점수 85점

ightharpoonup 정답 : 분산 $\frac{19}{2}$ 또는 9.5

편차의 합은 0 이다. 따라서 수학 점수의 편차는 0 이다. 평균이 85 점 이므로 수학점수도 85 점이다.

분산= $\frac{(편차^2 의 합)}{도수}$ 이므로

 $\frac{4+0+9+25}{4} = 9.5$ 이다.

3. 네 개의 수 5, 8, a, b 의 평균이 4이고, 분산이 7일 때, $a^2 + b^2$ 의 값을 구하여라.

답:▷ 정답: 3

02.

변량 5, 8, a, b 의 평균이 4 이므로 $\frac{5+8+a+b}{4} = 4, a+b+13 = 16$ ∴ $a+b=3\cdots$ ①
또, 분산이 7 이므로 $\frac{(5-4)^2+(8-4)^2+(a-4)^2+(b-4)^2}{4} = 7$ $\frac{1+16+a^2-8a+16+b^2-8b+16}{4} = 7$ $\frac{a^2+b^2-8(a+b)+49}{4} = 7$ $a^2+b^2-8(a+b)+49=28$ ∴ $a^2+b^2-8(a+b)=-21\cdots$ ②
①의 식에 ③을 대입하면
∴ $a^2+b^2=8(a+b)-21=8\times3-21=3$

4. 다음 표는 희숙이와 미희가 올해 본 수학 성적을 조사한 것이다. 다음 보기 중 옳은 것을 모두 고르시오.

반	희숙	미희
평균(점)	86	85
표준편차	5	0

보기 ⊙ 희숙이는 미희보다 항상 성적이 높았다.

- ① 미희는 항상 같은 점수를 받았다.
- € 희숙이의 성적이 더 고르다.
- ◎ 미희는 85 점 아래로 받아 본적이 없다.

② 희숙이는 86 점 아래로 받아 본적이 없다.

▶ 답:

답:

- ▷ 정답: □
- ▷ 정답: □

해설

⊙ 희숙이는 미희보다 항상 성적이 높았다. ⇒ 희숙이는 표준편 차가 5 이므로 85 점보다 낮은 점수를 받았을 수도 있다.

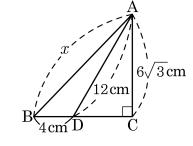
- ⓒ 희숙이의 성적이 더 고르다. ⇒ 미희 성적이 더 고르다. ② 희숙이는 86 점 아래로 받아 본적이 없다. \Rightarrow 표준편차가 5
- 이므로 86 점 아래 점수도 받았다.

5. 다음 도수분포표는 어느 반에서 20명 학생의 체육 실기 점수를 나타낸 것이다. 이 반 학생들의 체육 실기 점수의 분산과 표준편차는?

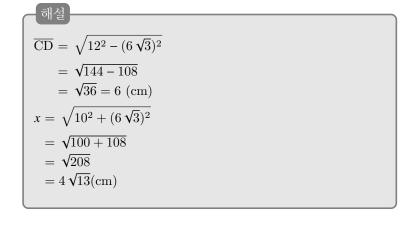
점수(점) 1 2 3 4 5 학생수(명) 2 5 8 3 2

① 분산: 1.15, 표준편차: √1.15 ② 분산: 1.17, 표준편차: √1.17 ③ 분산: 1.19, 표준편차: √1.19 ④ 분산 : 1.21, 표준편차 : $\sqrt{1.21}$

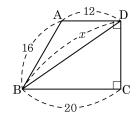
⑤ 분산 : 1.23, 표준편차 : $\sqrt{1.23}$


해설

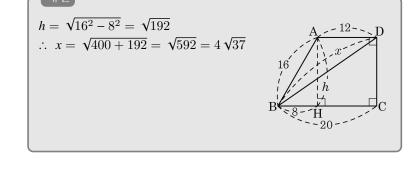
평균: $\frac{2 \times 1 + 2 \times 5 + 3 \times 8 + 4 \times 3 + 5 \times 2}{20} = 2.9$ 편차: -1.9, -0.9, 0.1, 1.1, 2.1 발산: $\frac{(-1.9)^2 \times 2 + (-0.9)^2 \times 5 + 0.1^2 \times 8}{20} +$


 $\frac{1.1^2 \times 3 + 2.1^2 \times 2}{20} = 1.19$

표준편차: √1.19


다음 그림과 같은 직각삼각형에서 *x* 의 길이를 구하여라. **6.**

- ① $\sqrt{13}$ cm
- $2\sqrt{13}$ cm
- $3\sqrt{13}$ cm
- $\boxed{4} 4\sqrt{13} \text{cm} \qquad \boxed{5} 5\sqrt{13} \text{cm}$



7. 다음 그림에서 x 의 값을 구하여라.

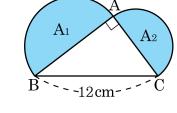
답:

▷ 정답: 4√37

8. 10 cm 거리에 있는 두 못A, B 에 길이 24 cm 의 끈을 걸어서 다음 그림과 같이, ∠C 가 직 각이 되게 하려고 한다. 변 AC 를 몇 cm 로 하여야 하는지 구하여라. (단, AC < BC)

 $\underline{\mathrm{cm}}$

정답: 6 cm


▶ 답:

 $\overline{\mathrm{AC}}=x\,\mathrm{cm},\overline{\mathrm{BC}}=14-x\,\mathrm{cm}$ 라고 하면

해설

 $x^2 + (14 - x)^2 = 10^2$, $x^2 + 196 - 28x + x^2 = 100$, $2x^2 - 28x + 96 = 0$, $x^2 - 14x + 48 = 0$, (x - 6)(x - 8) = 0이므로 x = 6 또는 x = 8 이다. $\overline{AC} < \overline{BC}$ 이므로 $\overline{AC} = 6$ cm, $\overline{BC} = 8$ cm 이다.

직각삼각형 ABC 에 대해 그림과 같이 반원을 그리고, 각각의 넓이를 9. A_1, A_2 라고 했을 때, A_1 – $A_2 = 2\pi\,\mathrm{cm}^2$ 이다. A_1, A_2 를 각각 구하 여라.

 $\underline{\mathrm{cm}^2}$

▶ 답: $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $A_1=10\pi\ \underline{\mathrm{cm}^2}$ ightharpoonup 정답: $A_2=8\pi\ \underline{\mathrm{cm}^2}$

$\overline{\mathrm{BC}}$ 를 지름으로 하는 반원의 넓이는 $\frac{1}{2}\cdot 6^2\cdot \pi=18\pi\,\mathrm{cm}^2$ 이

해설

답:

고, 피타고라스 정리에 의해 $A_1+A_2=18\pi\,\mathrm{cm}^2$ 이 성립하고, $A_1-A_2=2\pi\,\mathrm{cm}^2$ 이므로 따라서 연립방정식을 풀면 $A_1=10\pi\,\mathrm{cm}^2$, $A_2=8\pi\,\mathrm{cm}^2$ 이다.

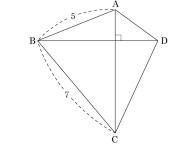
10. 다음 그림과 같이 가로의 길이가 $10 {
m cm}$, 세로의 길이가 $8 {
m cm}$ 인 직사 각형을 꼭짓점 A 가 \overline{BC} 위의 점 P 에 오도록 접었다. 이 때, ΔDQP 의 넓이를 구하여라.

▷ 정답: 25 cm²

답:

 $\Delta \mathrm{DPC}$ 에서 $\overline{\mathrm{PC}} = \sqrt{10^2 - 8^2} = 6$

해설

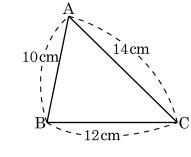

 \overline{AQ} 를 x 라고 하면, $\triangle QBP$ 에서 $\overline{QB}=8-x$, $\overline{BP}=4$, $\overline{QP}=x$, $x^2=(8-x)^2+4^2$, x=5 $\overline{QP}=5cm$, $\overline{DP}=10cm$, $\triangle QPD=\frac{1}{2}\times 5\times 10=25(\;cm^2)$

11. 가로와 세로의 길이의 비가 2:3 이고 대각선의 길이가 $4\sqrt{13}$ 인 직사각형의 둘레의 길이를 구하여라.

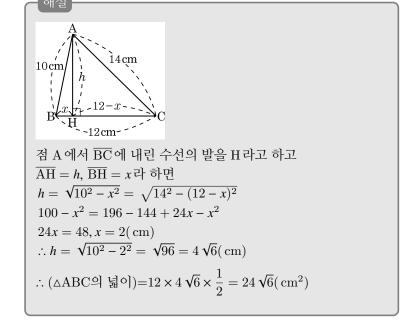
답:▷ 정답: 40

직사각형의 가로의 길이를 2k, 세로의 길이를 3k라 하면 $4\sqrt{13} = \sqrt{(2k)^2 + (3k)^2}$ $= \sqrt{4k^2 + 9k^2}$ $= \sqrt{13}k$ $\therefore k = 4$ 따라서 둘레의 길이는 2(2k + 3k) = 10k = 40 이다.

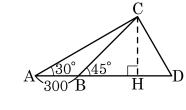
12. 다음 그림과 같이 $\square ABCD$ 에서 두 대각선이 서로 직교하고, $\overline{AB}=5$, $\overline{BC}=7$ 일 때, $\overline{\mathrm{CD}}^2$ – $\overline{\mathrm{AD}}^2$ 의 값을 구하여라.



▷ 정답: 24


▶ 답:

□ABCD 의 두 대각선이 서로 직교하므로 $\overline{AB}^2 + \overline{CD}^2 = \overline{BC}^2 + \overline{AD}^2$ $5^2 + \overline{CD}^2 = 7^2 + \overline{AD}^2$ $\therefore \overline{CD}^2 - \overline{AD}^2 = 24$

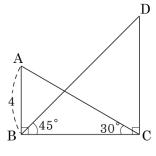

13. 다음 그림과 같이 밑변이 $12 \, \mathrm{cm}$ 인 삼각형 ABC 의 넓이를 구하여라.

답: <u>cm²</u>
 ▷ 정답: 24√6 <u>cm²</u>

14. 다음 그림에서 $\overline{AB}=300$, $\angle A=30$ °, $\angle CBH=45$ °일 때, \overline{CH} 의 길이는?

- ④ $150(\sqrt{3}-1)$ ⑤ $150(\sqrt{2}+1)$
- ① $300(1+\sqrt{2})$ ② $300(1-\sqrt{2})$
- $3150(\sqrt{3}+1)$

해설


 $\overline{\mathrm{CH}} = x$ 라 하면, $\overline{\mathrm{BH}} = x$

 $\triangle ACH$ 에서, $\overline{CH}: \overline{AH} = 1: \sqrt{3}$

 $x: (300+x) = 1: \sqrt{3}$ $300 + x = \sqrt{3}x$

 $(\sqrt{3} - 1)x = 300$ $x = 150(\sqrt{3} + 1)$

15. 다음 그림과 같이AB = 4cm 이고 ∠ACB = 30°, ∠DBC = 45°일 때, BD 의 길이를 구하여라.

ightharpoonup 정답: $\overline{\mathrm{BD}} = 4\sqrt{6}\mathrm{\underline{cm}}$

<u>cm</u>

 $\overline{BC} = \sqrt{3} \times \overline{AB} = 4\sqrt{3} \text{(cm)}$ $\overline{BD} = \sqrt{2} \times \overline{BC} = 4\sqrt{6} \text{(cm)}$

▶ 답:

16. 좌표평면 위의 두 점 A(-3, 2), B(6, 4) 사이의 거리를 구하여라.

답:

▷ 정답: √85

해설 $\overline{AB} = \sqrt{(-3-6)^2 + (2-4)^2}$ $= \sqrt{81+4} = \sqrt{85}$

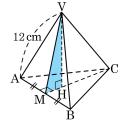
17. 이차함수 $y = -\frac{1}{4}x^2 + 2x - 1$ 의 그래프의 꼭짓점과 y 축과의 교점, 그리고 원점을 이어 삼각형을 만들었다. 이 삼각형의 둘레의 길이가 $a+b\sqrt{c}$ 일 때, a+b+c 의 값은?(단, a,b,c는 유리수, c는 최소의 자연수)

① 6 ② 8 ③ 10 ④ 12 ⑤ 14

 $y = -\frac{1}{4}x^2 + 2x - 1$ $y = -\frac{1}{4}(x - 4)^2 + 3$ 이므로 꼭짓점의 좌표는 (4, 3) 이다.

y 축과의 교점은 x 좌표가 0 일 때이므로 (0, −1)

따라서


꼭짓점 - 원점의 거리

 $= \sqrt{(4-0)^2 + (3-0)^2} = 5$ y 축과의 교점-원점의 거리 = 1 꼭짓점-y 축과의 교점의 거리

 $= \sqrt{(4-0)^2 + (3-(-1))^2} = 4\sqrt{2}$

 \therefore 삼각형의 둘레= $6+4\sqrt{2}$ 이므로 a+b+c 의 값은 12 이다.

18. 다음 그림과 같이 한 모서리의 길이가 $12 \, \mathrm{cm}$ 인 정사면체 V – ABC 의 꼭짓점 V 에서 밑면에 내린 수선의 발을 H , \overline{AB} 의 중점을 M 이라 할 때, △VMH 의 넓이를 구하여라.

ightharpoonup 정답: $12\sqrt{2}$ $\underline{
m cm}^2$

답:

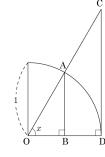
 $\overline{
m VH}$ 는 정사면체 높이 $h=rac{\sqrt{6}}{3}a=rac{\sqrt{6}}{3} imes12=4\sqrt{6}({
m \,cm})$ $\overline{\mathrm{MC}}$ 는 정삼각형의 높이 $h=\dfrac{\sqrt{3}}{2}a=\dfrac{\sqrt{3}}{2} imes 12=6\,\sqrt{3}(\,\mathrm{cm})$

 $\underline{\mathrm{cm}^2}$

$$\frac{2}{\text{MH}}$$
는 $\overline{\text{MC}}$ 의 $\frac{1}{3}$ 이므로 $2\sqrt{3}(\text{cm})$

 $\therefore \triangle VMH = \frac{1}{2} \times \overline{MH} \times \overline{VH} = \frac{1}{2} \times 2\sqrt{3} \times 4\sqrt{6} = 12\sqrt{2} (\text{ cm}^2)$

19. $\tan A = \frac{4}{3}$ 일 때, $\sin A - \cos A$ 의 값을 구하여라.(단, 0 ° < A < 90 °)


ightharpoonup 정답: $rac{1}{5}$

$$\tan A = \frac{4}{3}$$
이면
$$\therefore \sin A - \cos A = \frac{4}{5} - \frac{3}{5} = \frac{1}{5}$$

① $\sqrt{2}$ ② $\sqrt{3}$ ③ 2 ④ $2\sqrt{2}$ ⑤ $2\sqrt{3}$

해설 (준식) $=\frac{1}{2} \times \sqrt{3} + \frac{\sqrt{3}}{2} = \sqrt{3}$

21. 그림과 같이 반지름의 길이가 1 인 사분원에서 $\tan x$ 를 나타내는 선분은?

 $\tan x = \frac{\overline{\text{CD}}}{\overline{\text{OD}}} = \frac{\overline{\text{CD}}}{1} = \overline{\text{CD}}$

22. x 에 관한 이차방정식 $2x^2-11x+a=0$ 의 한 근이 $\sin 90^\circ+\cos 0^\circ$ 일 때, a 의 값을 구하면?

① 14 ② 13 ③ 12 ④ 11 ⑤ 10

이차방정식 $2x^2-11x+a=0$ 에 x=2 를 대입하면, $2\times 2^2-1$ $11 \times 2 + a = 0$ 8 - 22 + a = 0, a = 14

23. 다음 중 삼각비의 값의 대소 관계로 옳은 것을 고르면?

- ① $\sin 20^{\circ} > \sin 49^{\circ}$ ③ $\sin 20^{\circ} = \cos 30^{\circ}$

- $\oplus \sin 45^{\circ} > \cos 45^{\circ}$

 $0^{\circ} \le x \le 45^{\circ}$ 인 범위에서 $\sin x < \cos x$ 이고, $x = 45^{\circ}$ 일 때,

 $\sin x = \cos x < \tan x$ 이다.

24. $\tan(x+15^{\circ})=1$ 일 때, $\sin x + \cos x$ 의 값은? (단, $0^{\circ} < x < 90^{\circ}$)

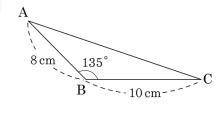
①
$$\frac{\sqrt{3}}{2}$$
 ② 1
④ $\frac{3}{2}$ ③ $\frac{2+\sqrt{3}}{2}$

tan 45° = 1 ○ □ □ □ x + 15° = 45°, x = 30°
sin 30° =
$$\frac{1}{2}$$
, cos 30° = $\frac{\sqrt{3}}{2}$
∴ sin 30° + cos 30° = $\frac{1}{2}$ + $\frac{\sqrt{3}}{2}$ = $\frac{1 + \sqrt{3}}{2}$

25. A 지점에서부터 철민이와 수란이가 동시에 자전거를 타고 각자의 집으로 $<35^{\circ}$ 가고 있다. 철민이는 시속 20 km 로 남서쪽 25° 방향으로 가고 수란이는 시속 4km 로 남동쪽 35° 방향으로 간다면 A 지점에서 출발한 지 1시간 30분 후의 철민이와 수란이 사이의 거리는? 남쪽

 $2\sqrt{13}\,\mathrm{km}$

 $3\sqrt{15}\,\mathrm{km}$

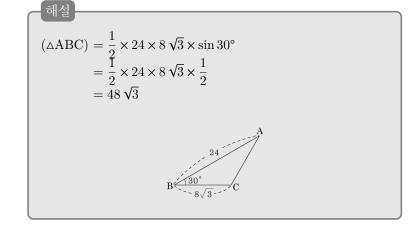

 $\bigcirc 6\sqrt{21}\,\mathrm{km}$ ④ $5\sqrt{21} \, \text{km}$

① $\sqrt{11}$ km

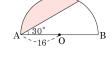
 $= \sqrt{27^2 + (3\sqrt{3})^2}$ = $6\sqrt{21}$ (km)

해설 (1.5 시간 동안 철민이가 간 거리) $=20 \times 1.5 = 30 \text{ (km)}$ (1.5 시간 동안 수란이가 간 거리) $= 4 \times 1.5 = 6 \text{ (km)}$ 철민이와 수란이가 있는 지점을 각각 B, C 라고 하면 $\overline{\mathrm{AH}} = 6\cos 60^{\circ} = 3 \text{ (km)}$ $\therefore \overline{\text{HB}} = 30 - 3 = 27 \text{ (km)}$ $\overline{\rm CH} = 6\sin 60\,^\circ = 3\,\sqrt{3}\ (\,{\rm km})$ $\therefore \ \overline{BC} = \sqrt{\overline{HB^2} + \overline{CH^2}}$

26. 다음 삼각형의 넓이를 구하여 라.

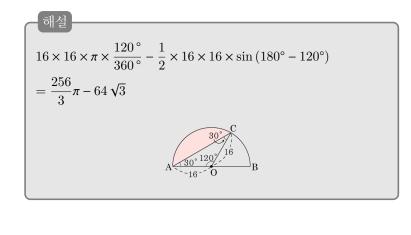

▶ 답:
 > 정답:
 20 √2 cm²
 $\underline{\rm cm}^2$

(템이) = $\frac{1}{2} \times 8 \times 10 \times \sin(180^{\circ} - 135^{\circ})$ = $\frac{1}{2} \times 8 \times 10 \times \sin 45^{\circ}$ = $\frac{1}{2} \times 8 \times 10 \times \frac{\sqrt{2}}{2} = 20 \sqrt{2} \text{ (cm}^2\text{)}$

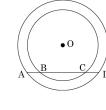

. 다음 그림과 같은 $\triangle ABC$ 의 넓이를 구하면?

B − 8√3 - - C - - H

 $48\sqrt{6}$ ② $48\sqrt{5}$ ③ $48\sqrt{3}$ ④ $48\sqrt{2}$ ⑤ 48



28. 그림과 같이 반지름의 길이가 16 인 반원에서 $\angle BAC = 30^\circ$ 일 때, 색칠한 부분의 넓이를 구하여라.



답:

ightharpoonup 정답: $\frac{256}{3}\pi - 64\sqrt{3}$

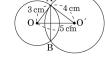
 ${f 29}$. 다음 그림에서 두 원은 동심원이다. $\overline{
m BD}=2{
m cm}$ 일 때, $\overline{
m AC}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

정답: 2<u>cm</u>

▶ 답:

 O 에서 현에 내린 수선의 발을 M 이라 하면 $\overline{\mathrm{AM}} = \overline{\mathrm{DM}}$ $\overline{\mathrm{BM}}=\overline{\mathrm{CM}}$ $\overline{AB} = \overline{AM} - \overline{BM}$ $\overline{\mathrm{CD}} = \overline{\mathrm{DM}} - \overline{\mathrm{CM}}$ $\therefore \overline{AB} = \overline{CD}$ $\overline{\mathrm{BD}} = \overline{\mathrm{BC}} + \overline{\mathrm{CD}} = \overline{\mathrm{BC}} + \overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ $\therefore \overline{AC} = 2cm$


30. 다음 중 옳지 <u>않은</u> 것은?

- ① 합동인 두 원에서 중심각과 호의 길이는 정비례한다.
- ② 합동인 두 원에서 중심각과 현의 길이는 정비례한다 ③ 원의 중심에서 현에 내린 수선은 그 현을 이등분한다.
- ④ 한 원에서 중심에서 같은 거리에 있는 두 현의 길이는 같다.
- ⑤ 현의 수직이등분선은 원의 중심을 지난다.

중심각과 현의 길이는 정비례하지 않는다.

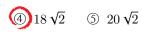
해설

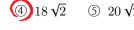
31. 다음 그림과 같이 반지름의 길이가 각각 3cm, 4cm 인 두 원이 두 점 A, B에서 만나고 중심 사이의 거리가 5cm 일 때, 공통현 AB 의 길이를 구하여라.

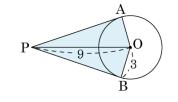
 $\underline{\mathrm{cm}}$

▷ 정답: 4.8cm

답:

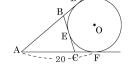

 $\triangle OAO'$ 에서 $\overline{OA}^2 + \overline{O'A}^2 = \overline{OO'}^2$ 이므로 $\angle A = 90^\circ$ 점 A 에서 $\overline{OO'}$ 에 내린 수선의 발을 H 라 하면 $\triangle AOO' = \frac{1}{2}\overline{OA} \times \overline{O'A} = \frac{1}{2}\overline{OO'} \times \overline{AH}$


 $\stackrel{\sim}{\lnot}, \, \overline{\mathrm{OA}} \times \overline{\mathrm{O'A}} = \overline{\mathrm{OO'}} \times \overline{\mathrm{AH}}$ $3 \times 4 = 5\overline{\text{AH}}, \overline{\text{AH}} = 2.4 \text{ (cm)}$


 $\therefore \overline{AB} = 2\overline{AH} = 4.8 \, (cm)$

32. 다음 그림에서 색칠한 부분의 넓이는? $(단, \overline{PA}, \overline{PB} 는 원 O 의 접선)$

① $6\sqrt{3}$ ② $9\sqrt{3}$ ③ $12\sqrt{3}$



 $\triangle PAO \equiv \triangle PBO$ 이므로 $\overline{PA} = \overline{PB}$ $\angle A = 90^{\circ}$ 이므로 $\overline{PA} = \sqrt{9^2 - 3^2} = 6\sqrt{2}$

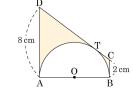
$$\triangle PAO = 6\sqrt{2} \times 3 \times \frac{1}{2} = 9\sqrt{2}$$

$$\therefore \square PBOA = 9\sqrt{2} \times 2 = 18\sqrt{2}$$

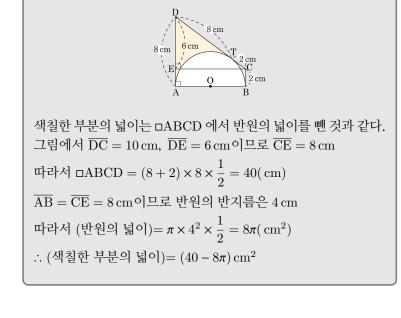
33. 다음 그림에서 원 O가 \triangle ABC 의 방접원일 때, \triangle ABC 의 둘레의 길이 를 구하여라.

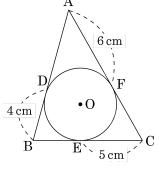
답:▷ 정답: 40

 $\overline{\mathrm{CF}} = \overline{\mathrm{CE}}, \ \overline{\mathrm{BE}} = \overline{\mathrm{BD}}$ 이고,


해설

 $\overline{AD} = \overline{AF}$ 이다. ($\triangle ABC$ 의 둘레) $= \overline{AB} + \overline{AC} + \overline{BC}$

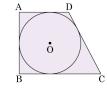

 $= \overline{AB} + \overline{AC} + \overline{BE} + \overline{EC}$ $= \overline{AB} + \overline{BD} + \overline{AC} + \overline{CF}$


 $= \overline{AD} + \overline{AF} = 40$

 ${f 34.}$ 다음 그림과 같이 반원의 호 AB 위의 한 점 T 를 지나는 접선이 지름 AB 의 양 끝점에서 그은 접선과 만나는 점을 각각 D, C 라 할 때, 색칠한 부분의 넓이는?

- ① $(40 8\pi)$ cm² ② $(40 + 8\pi)$ cm² ③ $(80 8\pi)$ cm² $\textcircled{4} (40 - 4\pi) \text{cm}^2$ $\textcircled{5} (80 - 16\pi) \text{cm}^2$

➢ 정답: 30cm

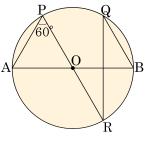

 $\overline{\mathrm{AD}} = \overline{\mathrm{AF}}, \ \overline{\mathrm{BD}} = \overline{\mathrm{BE}}, \ \overline{\mathrm{CF}} = \overline{\mathrm{CE}}$ 이므로

▶ 답:

 $\overline{AB} + \overline{BC} + \overline{CA} = 2(\overline{AF} + \overline{BD} + \overline{CE})$ = 2(4+5+6) = 30(cm)이다.

 $\underline{\mathrm{cm}}$

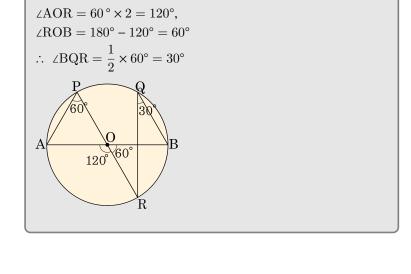
36. 다음 그림에서 □ABCD 는 원 O 의 외접사각형이다. $\overline{AB}+\overline{CD}=24cm$ 일 때, $\overline{AD}+\overline{BC}$ 의 값은?

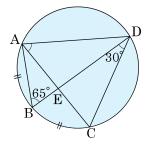

① 24cm ④ 27cm ② 9√2cm
 ⑤ 12cm

3 9cm

 $\overline{AD} + \overline{BC} = \overline{AB} + \overline{CD}$ 이므로 $\overline{AB} + \overline{CD} = 24$ cm

해설


37. 다음 그림에서 \overline{AB} 는 원 O 의 지름이다. $\angle APR = 60^\circ$ 일 때, $\angle BQR$ 의 크기를 구하여라.

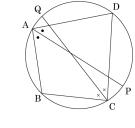

 ▶ 답:

 ▷ 정답:
 30 °

해설

38. 다음 그림에서 5.0ptAB = 5.0ptBC, ∠ABD = 65°, ∠BDC = 30° 일 때, ∠CAD 의 크기를 구하여라.

➢ 정답: 55 º


▶ 답:

5.0ptAB = 5.0ptBC 이므로

 $\angle BAC = \angle ADB = \angle BDC = 30^{\circ}$ $\triangle CAD$ 에서

 $\angle CAD = 180^{\circ} - (30^{\circ} + 30^{\circ} + 65^{\circ}) = 55^{\circ}$

39. 다음 그림과 같이 반지름의 길이가 3cm 인 원에 사각형 ABCD 가 내접하고 있다. ∠A, ∠C 의 이등분선과 원과의 교점을 각각 P, Q 라 할 때, $5.0\mathrm{pt}24.88\mathrm{pt}\widehat{\mathrm{QDP}}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

▷ 정답: 3π cm

답:

 $\angle PAD + \angle DCQ = 90^{\circ}$

 $\begin{array}{ll} \therefore & 5.0 \mathrm{pt} 24.88 pt \widehat{\mathrm{QDP}} = 5.0 \mathrm{pt} \widehat{\mathrm{QD}} + 5.0 \mathrm{pt} \widehat{\mathrm{DP}} = (2\pi \times 3) \div 2 = 3\pi (\,\mathrm{cm}) \end{array}$

∠BAD + ∠BCD = 180° 이므로

40. 다음 그림의 원에서 $_{5.0\mathrm{pt}}24.88pt$ DAB 의 길이는 원 주의 $\frac{3}{5}$ 이고 $5.0\mathrm{pt}24.88\mathrm{pt}\widehat{\mathrm{ADC}}$ 의 길이는 원주의 $\frac{5}{9}$ 일 때, x + y 의 $\frac{x}{E}$ D 값을 구하여라. ▶ 답:

▷ 정답: 172_°

 $\angle BCD = \frac{3}{5} \times 180^{\circ} = 108^{\circ}$ 이므로 $y^{\circ} = 180^{\circ} - 108^{\circ} = 72^{\circ}$... $y = 72^{\circ}$

 $\angle ABC = \frac{5}{9} \times 180^{\circ} = 100^{\circ}$ 이므로 $x^{\circ} = 100^{\circ}$ $\therefore x = 100^{\circ}$ 따라서 $x + y = 100 + 72 = 172^{\circ}$ 이다.