- 다음 그림과 같이 평행사변형 ABCD 에서 $\angle {
 m ABD} = 35\,^{\circ}$, $\angle {
 m ACD} = 55\,^{\circ}$ 일 때, $\angle x - \angle y$ 의 값은?
 - ① 20° ② 25° ③ 30°
 - ④ 35° ⑤ 40°

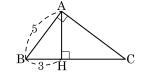
 $\overline{\mathrm{AB}}\,/\!/\,\overline{\mathrm{DC}}$ 이므로 $\angle\mathrm{OAB}=\angle\mathrm{OCD}=55^\circ$

 $\triangle ABO$ 에서 $\angle AOB = 180^{\circ} - (35^{\circ} + 55^{\circ}) = 90^{\circ}$ 평행사변형의 두 대각선이 서로 수직이므로 □ABCD 는 마름모 가 된다. $\angle x = 55^{\circ}, \angle y = 35^{\circ}$ $\therefore \angle x - \angle y = 20^{\circ}$

해설

1.

2. 다음 그림에서 ∠AHB = ∠BAC = 90° 일 때, 다음 중 옳지 <u>않은</u> 것은?



 $\overline{\text{3}}\overline{\text{AC}}:\overline{\text{AH}}=5:2$

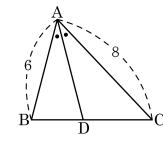
① $\triangle ABC \hookrightarrow \triangle HBA$

② $\overline{\text{CH}} = \frac{16}{3}$ ④ $\overline{\text{AH}} = 4$

O 1111

△BAC ∽ △BHA(AA닮음)

AB: BH = 5:3 이므로 닮음비는 5:3 이다. ∴ AC: AH = 5:3 3. 다음 그림과 같이 \overline{AD} 는 $\angle BAC$ 의 이등분선이고 $\overline{AB}=6,\ \overline{AC}=8$ 일 때, $\triangle ABD$ 와 $\triangle ACD$ 의 넓이의 비는?



④ 9:16

① 2:3

②3:4 ⑤ 27:64

3 4:9

 ΔABD 와 ΔACD 는 같은 높이를 가지므로 넓이의 비는 밑변의

길이의 비와 같다. $\overline{AB}: \overline{AC} = \overline{BD}: \overline{DC} = 3:4$ 이므로 $\triangle ABD: \triangle ACD = 3:4$

4. 다음과 같은 그림에서 $\overline{\rm DE}$ // $\overline{\rm BC}$ 일 때, $\triangle {\rm ABC}$ 의 둘레의 길이는?

351

① 49 ④ 52 ② 50 ⑤ 53

해설

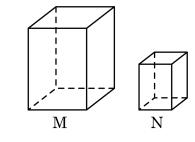
 $\overline{AB} : 4 = 18 : 6$ $\overline{AB} = 12$

 $\overline{AC} = 21$

 $\overline{\mathrm{AC}}:7=18:6$

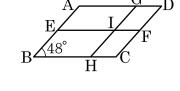
∴ (△ABC 의 둘레의 길이)= 12 + 18 + 21 = 51

5. 닮은 두 직육면체 M 와 N 의 겉넓이의 비가 9 : 4 이고 M 의 겉넓이가 18 일 때, N 의 겉넓이는?



① 8 ② 10 ③ 12 ④ 14 ⑤ 16

9: 4 = 18: x $\therefore x = 8$ 6. 다음 그림의 평행사변형 ABCD 에서 $\overline{AB}//\overline{GH}$, $\overline{AD}//\overline{EF}$ 이다. $\angle B=48$ ° 일 때, $\angle DFI$ 의 크기는?

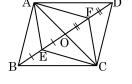


① 120° ② 124° ③ 130° ④ 132° ⑤ 136°

 $\overline{\mathrm{GI}}//\overline{\mathrm{DF}}$, $\overline{\mathrm{GD}}//\overline{\mathrm{IF}}$ 이므로

GIFD 는 평행사변형이다. ∠D = ∠B = 48° 이므로 ∠F = 180° - 48° = 132°

7. 다음 그림과 같이 평행사변형 ABCD 에서 두 대각선의 교점을 O 라 하고, BO, DO 의 중점을 각각 E, F 라 할 때, 다음 중 옳지 않은 것은?



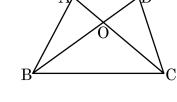
① $\overline{AE} = \overline{CF}$ ③ $\overline{AF} /\!/ \overline{EC}$ $\textcircled{4} \angle OEC = \angle OFA$

평행사변형의 두 대각선은 서로 이등분 하므로 $\overline{\mathrm{BO}}=\overline{\mathrm{DO}}$ 이다.

해설

 $\overline{\mathrm{BO}}$, $\overline{\mathrm{DO}}$ 를 각각 이등분 한 길이는 같다. $\overline{\mathrm{OE}}=\overline{\mathrm{OF}}$ 이고 $\overline{\mathrm{OA}}=\overline{\mathrm{OC}}$ (평행사변형 ABCD 의 대각선의 이등분선) 이므로 $\Box\mathrm{AECF}$ 는 평행사변형이 된다.

다음 사다리꼴 ABCD 에서 $\overline{\rm AD}//\overline{\rm BC}$, $\overline{\rm AO}$: $\overline{\rm OC}$ = 1 : 2 이고 8. $\Delta \mathrm{DOC} = 12\mathrm{cm}^2$ 이다. 사다리꼴 ABCD 의 넓이는?

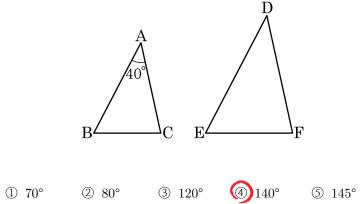


- $\textcircled{1} \ \ 32 \mathrm{cm}^2$ $463 \, \mathrm{cm}^2$
- 248cm^2 \bigcirc 72cm²
- 354cm^2

해설

 $1:2=\triangle AOD:12cm^2$, $\triangle AOD=6cm^2$ $\triangle DOC=\triangle AOB=12cm^2$, $1:2=12cm^2:\triangle BOC$, $\triangle BOC=$ $\Box ABCD = 6 + 12 + 12 + 24 = 54 (\,\mathrm{cm}^2)$

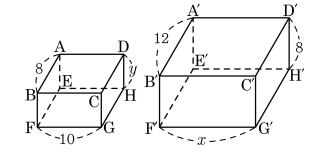
9. 다음 그림에서 $\triangle ABC \bigcirc \triangle DEF$ 일 때, $\angle E + \angle F$ 의 크기는?



두 삼각형이 닮음이므로 대응각인 $\angle A = \angle D$ 이다. 삼각형의 세 내각의 합은 180° 이므로 $\angle D + \angle E + \angle F = 180^{\circ}$

 $\therefore \angle E + \angle F = 180^{\circ} - 40^{\circ} = 140^{\circ}$

 ${f 10}$. 다음과 같은 두 직육면체에서 ${f AB}$ 와 ${f A'B'}$ 가 대응하는 변일 때, $x{ imes}3y$ 의 값은?



1 240

② 242 3 244 4 246

^⑤ 248

 $\overline{AB}: \overline{A'B'} = 8:12 = 2:3$ 이므로

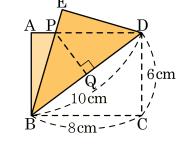
 $10: x = 2: 3, \ 2x = 30$

 $\therefore x = 15$

y: 8 = 2: 3, 3y = 16

따라서 $x \times 3y = 15 \times 16 = 240$ 이다.

11. 다음 그림은 $\overline{AD}=8$ cm, $\overline{AB}=6$ cm, $\overline{BD}=10$ cm 인 직사각형 ABCD 에서 대각선 BD 를 접는 선으로 하여 점 C 가 점 E 에 오도록 접은 것이다. \overline{AD} 와 \overline{BE} 의 교점 P 에서 \overline{BD} 에 내린 수선의 발을 Q 라 할 때, \overline{PQ} 의 길이는?



- $\begin{array}{c}
 \text{(1)} \frac{16}{4} \text{ cr} \\
 \text{(4)} \frac{15}{2} \text{ cr}
 \end{array}$

③ 5cm

 $\triangle ABP \equiv \triangle EDP$ 이므로 $\triangle PBD$ 는 이등삼각형, 따라서 \overline{BQ} =

해설

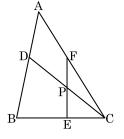
5 (cm) 이다. △BPQ 와 △BDC 에서 ∠C = ∠PQB, ∠PBQ = ∠DBC 이므로

△BPQ ∽ △BDC (AA 닮음)

 $\overline{BQ} : \overline{BC} = \overline{PQ} : \overline{DC}$

 $5:8=x:6 \qquad \therefore \ x=\frac{15}{4}$

12. 다음 그림의 △ABC 에서 ĀD : DB = 3 : 4, BE : EC = 4 : 3, CF : FA = 4 : 3 이다. FP = 5 cm, PC = 8 cm 일 때, DP 와 PE 의 길이의 차를 구하여라.



정답: 3 cm

 $\underline{\mathrm{cm}}$

▶ 답:

 $\overline{\mathrm{DF}} /\!/ \overline{\mathrm{BC}}, \ \overline{\mathrm{DE}} /\!/ \overline{\mathrm{AC}}$ 이므로

해설

□DECF 는 평행사변형이다.

DP = PC = 8 cm

PE = FP = 5 cm

DP - PE = 8 - 5 = 3(cm)

13. 다음 그림에서 점 G는 \triangle ABC의 무게중심이고, \triangle DGE = 4cm 2 일 때, \triangle ABC의 넓이는?



 $\textcircled{4} 44 \text{cm}^2$

 \bigcirc 32cm²

 $\bigcirc 348 \mathrm{cm}^2$

 $2 36 \text{cm}^2$

- $3 40 \text{cm}^2$

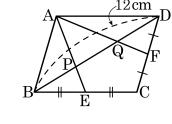
 $\Delta \mathrm{BDE}$ 에서 $\overline{\mathrm{BG}}:\overline{\mathrm{GE}}=2:1$ 이므로

해설

 $\triangle BDG: \triangle DGE = 2:1$ $\triangle BDG : 4 = 2 : 1$ $\therefore \triangle BDG = 8 \text{ (cm}^2\text{)}$

 $\triangle BDG = \frac{1}{6} \triangle ABC \qquad \therefore \ \triangle ABC = 48 \ (\,cm^2)$

14. 다음 그림과 같은 평행사변형 ABCD의 두 변 BC, CD의 중점을 각각 E, F라 하고, \overline{BD} 와 \overline{AE} , \overline{AF} 와의 교점을 각각 P, Q라 한다. $\overline{BD} = 12 \mathrm{cm}$ 일 때, \overline{PQ} 의 길이를 구하면?



4cm

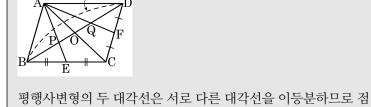
① 2cm

해설

② 2.5cm ⑤ 5cm ③ 3cm

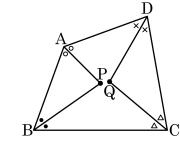
평행사변형의 대각선 $\overline{ ext{AC}}$ 를 그으면,

P, Q는 \triangle ABC, \triangle ACD의 무게중심이다.



 $\overline{\mathrm{BO}}=6\mathrm{cm}$ 이고, $\overline{\mathrm{BP}}:\overline{\mathrm{PO}}=2:1$ 이므로, $\overline{\mathrm{PO}}=2\mathrm{cm}$, 마찬가지로 $\overline{\mathrm{QO}}=2\mathrm{cm}$ 이다. 따라서 $\overline{\mathrm{PQ}}=4\mathrm{cm}$ 이다.

15. 사각형 ABCD 에서 $\angle A$ 와 $\angle B$ 의 이등분선의 교점을 P , $\angle C$ 와 $\angle D$ 의 이등분선의 교점을 Q 라 할 때, $\angle APB + \angle DQC$ 의 크기를 구하여라.



① 90°

② 150°

③180°

④ 210°

⑤ 240°

 $\angle {\rm PAB} \, = \, a, \ \angle {\rm PBA} \, = \, b, \ \angle {\rm DCQ} \, = \, c, \ \angle {\rm CDQ} \, = \, d$ 라 하면,

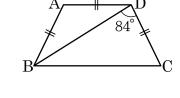
해설

□ABCD 에서 $2a + 2b + 2c + 2d = 360^{\circ}$: $a + b + c + d = 180^{\circ}$

 \triangle ABP 와 \triangle DQC 에서 $a+b+\angle {\rm APB}+c+d+\angle {\rm DQC}=360^{\circ}$

 $\therefore \ \angle APB + \angle DQC = 180^{\circ}$

16. 다음 그림과 같은 등변사다리꼴 ABCD 에서 $\overline{AB}=\overline{AD}$, $\angle BDC=84^\circ$ 일 때, $\angle C$ 의 크기를 구하여라.

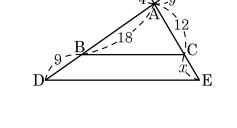


 답:

 ▷ 정답:
 64_°

 $\angle ADB = \angle DBC = \frac{1}{2}\angle C$ $\frac{1}{2}\angle C + \angle C = 96^{\circ}$ 이므로, $\angle C = 64^{\circ}$

17. 다음 그림에서 $\overline{\mathrm{BC}} \, / \! / \, \overline{\mathrm{DE}} \, / \! / \, \overline{\mathrm{FG}}$ 일 때, x-y 의 값은?



 $\bigcirc 0$

② 1 ③ 2 ④ 3 ⑤ 4

 $\overline{\mathrm{AB}}:\overline{\mathrm{BD}}=\overline{\mathrm{AC}}:\overline{\mathrm{CE}}$

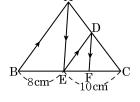
해설

 $\Leftrightarrow \ 18:9=12:x \qquad \therefore \ x=6$

 $\overline{\mathrm{AF}}:\overline{\mathrm{AB}}=\overline{\mathrm{AG}}:\overline{\mathrm{AC}}$ $\therefore y = 6$

 $\Leftrightarrow y: 18 = 4: 12$ $\therefore x - y = 6 - 6 = 0$

18. 다음 그림에서 $\overline{AB} /\!\!/ \overline{DE}$, $\overline{AE} /\!\!/ \overline{DF}$ 일 때, EF 의 길이를 구하여라.



ightharpoonup 정답: $\overline{\mathrm{EF}}=rac{40}{9}\underline{\mathrm{cm}}$

▶ 답:

 $\triangle ABC$ 에서 \overline{AB} $/\!/ \overline{DE}$ 이므로 \overline{CB} : \overline{EB} = \overline{CA} : \overline{DA} 가 되며, \overline{AE} $/\!/ \overline{DF}$ 이므로 \overline{CA} : \overline{DA} = \overline{CE} : \overline{EF} 가 된다. 따라서 $\overline{\text{CB}}:\overline{\text{EB}}=\overline{\text{CE}}:\overline{\text{EF}}$ 이므로 $18:8=10:\overline{\text{EF}},\ 18\overline{\text{EF}}=$ 80, $\overline{\mathrm{EF}} = \frac{40}{9} (\mathrm{cm})$ 이 나온다.

 $\underline{\mathrm{cm}}$

19. 다음 그림에서 점 G 는 $\triangle ABC$ 의 무게중심 이고, 점 H 는 $\overline{\rm AF}$ 의 중점이다. $\overline{\rm GF}=6$ 일 때, $\overline{\mathrm{DH}}$ 의 길이를 구하면?

①9 ④ 12

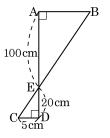
② 10 ⑤ 13

③ 11

 $\triangle ABF$ 에서 $\overline{BG}: \overline{GF} = 2:1, \overline{BG} = 12$,

 $\overline{\rm DH} = \frac{1}{2} \times 18 = 9$

20. 다음 그림은 두 지점 A, B 사이의 거리를 재기 위하여 축척이 $\frac{1}{1000}$ 인 축도를 그린 것이다. A, B 사이의 실제의 거리를 구하여라.



▷ 정답: 250m

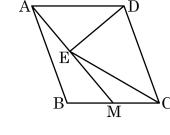
▶ 답:

 $5:20=\overline{AB}:100$

 $\overline{AB}=25\,\mathrm{cm}$ (실제의 거리) = $25 \times 1000 = 25000$ (cm) = 250 (m)

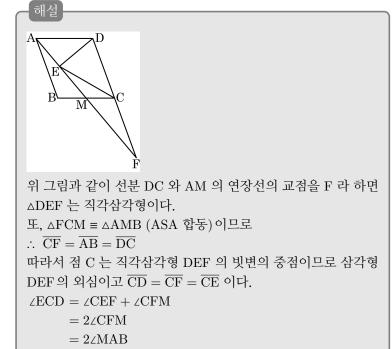
 $\underline{\mathbf{m}}$

21. 다음 그림과 같은 평행사변형 ABCD 에서 점 M 은 변 BC 의 중점이고, 점 D 에서 선분 AM 에 내린 수선의 발을 E 라 한다. \angle MAB = 20° , \angle B = 110° 일 때, \angle ECM 의 크기를 구하여라.



▷ 정답: 30°

▶ 답:

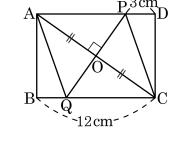


 \therefore \angle ECM = \angle DCM - \angle ECD = 70° - 40° = 30°

 $\angle DCM = 180\,^{\circ} - \angle B = 180\,^{\circ} - 110\,^{\circ} = 70\,^{\circ}$

 $=40^{\circ}$

22. 다음 직사각형 ABCD에서 $\overline{AC}\bot\overline{PQ}$, $\overline{AO}=\overline{CO}$ 일 때, $\Box AQCP$ 의 둘레의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

정답: 36 cm

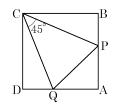
▶ 답:

 $\triangle AOP \equiv \triangle COQ (ASA합동)$ $\therefore \overline{PO} = \overline{QO}$ 이므로 $\Box AQCP$ 는 마름모이다.

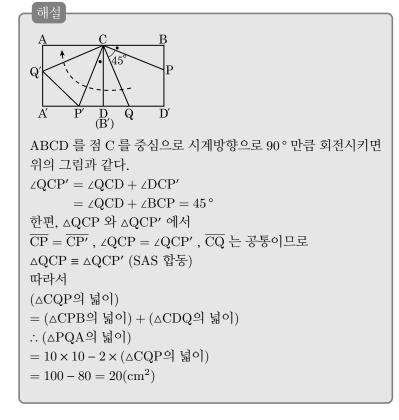
 $\overline{\mathrm{AO}} = \overline{\mathrm{CO}}, \ \angle \mathrm{AOP} = \angle \mathrm{COQ}, \ \angle \mathrm{PAO} = \angle \mathrm{QCO}$

∴ (둘레의 길이)= (12 - 3) × 4 = 36 (cm)

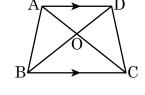
 23. 다음 그림과 같이 한 변의 길이가 10cm 인 정 사각형 ABCD 에서 ΔCQP 의 넓이가 40cm² 일 때, ΔPQA 의 넓이를 구하여라.



답: <u>cm²</u>
 ▷ 정답: 20 <u>cm²</u>



24. 다음 등변사다리꼴 ABCD에 대한 설명 중 옳은 것은?



 \bigcirc $\angle ABC = \angle DCB$

 $\ \, \widehat{AB}=\overline{AD}$

 \bigcirc $\overline{AB}//\overline{CD}$

 \bigcirc 2 × \triangle AOD = \triangle BOC

 $\textcircled{1} \ \textcircled{5}, \textcircled{c} \qquad \textcircled{2} \ \textcircled{L}, \textcircled{a} \qquad \textcircled{3} \ \textcircled{L}, \textcircled{a}$

4C, **2**

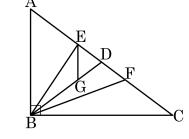
⑤ ⑤, ⑥

© 등변사다리꼴의정의에따라

밑변의양끝각의크기가같으므로 $\angle ABC = \angle DCB$ 이다. ◉ △ABC와 △DCB에서 $\overline{AB} = \overline{DC}$ 이고, \overline{BC} 는 공통,

 $\angle B = \angle C$ 이므로 $\triangle ABC \equiv \triangle DCB$ 이다.

 ${f 25}$. 다음과 같이 $\overline{
m AB}=6,\;\overline{
m BC}=8$, $m ABC=90^\circ$ 인 직각삼각형 ABC 의 무게중심을 G 라고 하자. 점 E, F 는 빗변 AC 의 삼등분점일 때, 삼각형 BEG 의 넓이를 구하여라.



ightharpoonup 정답: $rac{8}{3}$

삼각형 ABC 의 넓이는 $\frac{1}{2} \times 6 \times 8 = 24$

점 E, F 가 변 AC 의 삼등분점이므로 삼각형 BEF 의 넓이는 $\frac{1}{3} \times 24 = 8$, 삼각형 BDE 의 넓이는 4 점 G 는 삼각형 ABC 의 무게중심이므로 $\overline{BG}=2\overline{GD}$ 따라서 삼각형 BEG 의 넓이는 $4\times\frac{2}{3}=\frac{8}{3}$