1. $3^{\log_4 5^{\log_3 4}}$ 의 값을 구하여라.

▶ 답: _____

2. 직각삼각형의 세 변의 길이 a, b, c가 이 순서대로 공차가 3인 등차수 열을 이룰 때, 이 직각삼각형의 넓이는?

① 52 ② 54 ③ 56 ④ 58 ⑤ 60

3. 공차가 3인 등차수열 $\{a_n\}$ 에 대하여 보기에서 옳은 것을 모두 고르면? 보기

- \bigcirc 수열 $\{3a_n\}$ 은 공차가 9인 등차수열이다.
- \bigcirc 수열 $\{a_{2n-1}\}$ 은 공차가 6인 등차수열이다. \bigcirc 수열 $\{2a_{2n}-a_{2n-1}\}$ 은 공차가 6인 등차수열이다.

2 9, 6

1 🤊

4. 0이 아닌 네 실수 a, b, c, d에 대하여 $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ 과 b, c, d가 이 순서 대로 각각 조화수열을 이룰 때, 다음 중 옳은 것은?

① ad = bc ② ab = cd ③ abcd = 1

(4) a + b = d (5) a - d = b - c

5. 다음 조건을 만족하는 등차수열 $\{a_n\}$ 의 개수는? (단, $n \ge 3$)

 \bigcirc $a_1=1$

© 공차는 정수이다.

④ 4⑤ 무수히 많다.

① 1 ② 2

6. 첫째항이 45이고, 공차가 -4인 등차수열은 첫째항부터 제 몇 항까지의 합이 처음 음수가 되는가?

① 23 ② 24 ③ 25 ④ 26 ⑤ 27

7. 첫째항이 3이고, 첫째항부터 제 n항까지의 합이 $S_n = n^2 + pn$ 인 등차수열 $\{a_n\}$ 의 공차를 d라고 할 때, p+d의 값은? (단, p는 상수)

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

8. 첫째항부터 제 n항까지의 합이 $S_n=2n^2+2n+\alpha$ 인 등차수열 $\{a_n\}$ 에 대하여 α 의 값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

9. 첫째항부터 제n항까지의 합 $S_n=n^2+3n$ 인 수열 $\{a_n\}$ 에 대하여 $a_1+a_5+a_{10}$ 의 값은?

① 32 ② 34 ③ 36 ④ 38 ⑤ 40

- **10.** 0이 아닌 다섯 개의 수 *a*, *b*, *c*, *d*, *e*에 대하여 *a*, *b*, *c*는 이 순서로 조화수열을, *b*, *c*, *d*는 이 순서로 등비수열을, *c*, *d*, *e*는 이 순서로 등차수열을 이룰 때, 다음 중 옳은 것은?
 - ② a, c, e는 이 순서로 등비수열을 이룬다.③ a, c, e는 이 순서로 조화수열을 이룬다.

① a, c, e는 이 순서로 등차수열을 이룬다.

- ④ a, e, c는 이 순서로 등차수열을 이룬다.
- ⑤ a, e, c는 이 순서로 등비수열을 이룬다.

11. $a_1, a_2, a_3, \cdots, a_n$ 은 0, 1, 2 중 어느 하나의 값을 갖는다. $\sum_{k=1}^n = 40, \sum_{k=1}^n a_k^2 = 70$ 일 때, $\sum_{k=1}^n a_k^3$ 의 값은?

⑤ 150

① 110 ② 120 ③ 130 ④ 140

12. $\sum_{k=1}^{n} (k^2+1) - \sum_{k=1}^{n-1} (k^2-1)$ 을 n에 대한 식으로 나타내면 an^2+bn+c 일 때, 상수 a, b, c의 곱 abc의 값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

13. 오른쪽 그림처럼 바둑판 모양의 칸에 1부터 시계 방향으로 차례로 자연수를 배열하였다. 이때, 1 아래로 생기는 수열 1, 4, 15, 34, ···에서 제 10 항의 일의 자리 수는?
[21] 22 23 24 25 26

1	22	1	2 1	บ	
20	7	8	9	10	27
19	6	1	2	11	28
18	5	4	3	12	29
17	16	15	14	13	30
• • •	•••	34	33	32	31

① 3 ② 4 ③ 5 ④ 6 ⑤ 7

14. 다음 군수열에서 47은 몇 군의 몇째 항인가?

제1군 제2군 제3군 제4군 (1), (2, 3), (4, 5, 6), (7, 8, 9, 10),···

④ 제11군의 2항 ⑤ 제11군의 3항

① 제9군의 9항 ② 제10군의 2항 ③ 제10군의 3항

15. 수열 (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3), (4, 0) ··· 에서 (10, 9)는 제 몇 항인가?

① 180 ② 189 ③ 198 ④ 199 ⑤ 206

16. 다음과 같은 수열에서 (6, 4)는 몇 번째 항인가?

(1, 1), (1, 2), (2, 2), (1, 3), (2, 2), (3, 1), $(1, 4), (2, 3), (3, 2), (4, 1), (1, 5), (2, 4), \cdots$

제40항
 제43항

② 제41항⑤ 제44항

③ 제42항

 ${f 17.}~~a_1=3,~a_{n+1}=a_n+2(n=1,~2,~3,\cdots)$ 로 정의된 수열 $\{a_n\}$ 의 제 10

① 13

② 15 ③ 17 ④ 19

⑤ 21

18. 다음은 모든 자연수 n에 대하여 $1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1) \cdot 2^n$

 $= (2n)(2n-1)\cdots(n+2)(n+1)\cdots \bigcirc$

이 성립함을 수학적 귀납법으로 증명한 것이다.

(i) n = 1 일 때, (좌변)= (우변)=2 (ii) n = k 일 때 \bigcirc 이 성립한다고 가정하면 $1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2k-1) \cdot 2^k$ $= (2k)(2k-1) \cdots (k+2)(k+1) \cdots \cdots \bigcirc$ \bigcirc 의 양변에 $\boxed{(7)}$ 를 곱하면 $1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2k-1) \cdot \boxed{(4)}$ $= (2k)(2k-1) \cdots (k+2)(k+1) \cdot \boxed{(7)}$ $= (2k+2)(2k+1)(2k) \cdots (k+2)$ 따라서 n = k+1 일 때도 \bigcirc 이 성립한다. (i),(ii) 에 의하여 모든 자연수 n 에 대하여 \bigcirc 이 성립한다.

때, $\frac{g(10)}{f(10)}$ 의 값은?

위의 증명 과정에서 (\uparrow) , (\downarrow) 에 들어갈 식을 차례로 f(k), g(k)라 할

① $\frac{1}{1024}$ ② $\frac{1}{512}$ ③ 512 ④ 1024 ⑤ 2048

19. 거듭제곱에 대한 설명 중 옳은 것은?

- ① $\sqrt[4]{81} = \pm 3$ ② $\sqrt[3]{-64} = -8$
- ③ 16의 네제곱근은 ±2이다.
 ④ √(-3)²의 제곱근은 3이다.
- ⑤ -1은 -1의 세제곱근 중 하나이다.

20. $a > 0, a \neq 1$ 일 때, $\sqrt[3]{a\sqrt[3]{a\sqrt[4]{a}}} \times \sqrt[3]{\sqrt[3]{\sqrt{a}}} = a^k$ 을 만족시키는 유리 수 k의 값은?

① $\frac{1}{2}$ ② $\frac{1}{3}$ ③ $\frac{1}{4}$ ④ $\frac{1}{8}$ ⑤ $\frac{1}{9}$

21. $2^x + \frac{1}{2^x} = 2$ 일 때, $8^x + \frac{1}{8^x}$ 의 값은?

① 2 ② 3 ③ 4 ④ 5 ⑤ 6

22. $2^{2x} = 3$ 일 때, $\frac{2^x + 2^{-x}}{2^{3x} + 2^{-3x}}$ 의 값은?

① $\frac{1}{4}$ ② $\frac{2}{7}$ ③ $\frac{3}{8}$ ④ $\frac{3}{7}$ ⑤ $\frac{2}{3}$

- ① $\log_a a = 1$

 ${f 24.} \quad \log_2 \sqrt{7+\sqrt{24}}$ 의 소수 부분을 x라 할때, 2^{x+1} 의 값을 구하면?

 $\sqrt{7} + 1$ ⑤ $2\sqrt{2} + 1$

 $\sqrt{3} + 1$ ② $\sqrt{5} + 1$ ③ $\sqrt{6} + 1$

25. 등식 $\log_2(\log_3(\log_4 x)) = \log_3(\log_4(\log_2 y)) = \log_4(\log_2(\log_3 z)) = 0$ 이 성립할 때, x+y+z의 값은?

① 58

② 64

3 75

4 89

⑤ 93

26. $\sum_{k=1}^{100} [\log_5 k]$ 의 값은? (단, [x]는 x보다 크지 않은 최대의 정수이 다.)

① 150 ② 161 ③ 172 ④ 183 ⑤ 193

27. 정부에서는 흡연률과 간접흡연의 피해를 줄이고 청소년 흡연예방 등을 위해 담배 가격을 지속적으로 인상하려고 한다. 만약 정부가 담배 가격을 매년 일정한 시기에 바로 이전 연도 보다 15%씩 올리기로 한다면, 현재 가격의 세 배 이상이 되는 것은 최소 n년이 경과해야 하는지를 아래 상용로그표를 이용하여 구하면? (단, log₁₀ 3 = 0.4771 이다.)
 <상용로그표 >

 수
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

1.0	.0000	.0043	.0086	.0128	.0170	.0212	.0253	.0294	.0334	.0374
1.1	.0414	.0453	.0492	.0531	.0569	.0607	.0645	.0682	.0719	.0755
1.2	.0792	.0828	.0864	.0899	.0934	.0969	.1004	.1038	.1072	.1106
1.3	.1139	.1173	.1206	.1239	.1271	.1303	.1335	.1367	.1399	.1430
1.4	.1461	.1492	.1523	.1553	.1584	.1614	.1644	.1673	.1703	.1732
1.5	.1761	.1790	.1818	.1847	.1875	.1903	.1931	.1959	.1987	.2014
1.6	.2041	.2068	.2095	.2122	.2148	.2175	.2201	.2227	.2253	.2279
1.7	.2304	.2330	.2355	.2380	.2405	.2430	.2455	.2480	.2504	.2529
1.8	.2553	.2577	.2601	.2625	.2648	.2672	.2695	.2718	.2742	.2765
1.9	.2788	.2810	.2833	.2856	.2878	.2900	.2923	.2945	.2967	.2989
1	c		(2)	7		(2)	0			0
(I)	6		(2)	1		(3)	8		4)	9

28. 수열 $\{a_n\}$ 은 $a_1=1$ 이고, $na_{n+1}=\sum_{k=1}^n a_k(n=1,\ 2,\ 3,\ \cdots)$ 를 만족할 때, $\sum_{n=1}^{20}\left(\sum_{k=1}^n a_k\right)$ 의 값을 구하여라.

▶ 답: _____

29. 수열 a_n 을 다음과 같이 정의한다. $a_n = 10^{n-1} + 10^{-n} (\text{단}, \, n=1, \, 2, \, 3, \cdots) \\ b_n = \sum_{k=1}^n a_k$ 라고 할 때,

 $\sum_{k=1}^{10} b_k = \frac{1}{\bigcirc} \left\{ 10^{\bigcirc} + 10^{\bigcirc} + \bigcirc \right\}$ 이다.

이때, ①+ ⓒ+ ⓒ+ @의 값은?

① 29 ② 69 ③ 71 ④ 93

⑤ 111

30. $n \geq 2$ 인 모든 자연수 n에 대하여 다음 등식이 성립함을 수학적 귀납법으로 증명한 것이다. 다음 ____ 안에 공통으로 들어 갈 것은? $\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\cdots\left(1+\frac{1}{n}\right)=\frac{n+1}{2}$

(i)
$$n=2$$
일 때, $($ 좌변 $)=1+\frac{1}{2}=\frac{3}{2},$ $($ 우변 $)=\frac{2+1}{2}=\frac{3}{2}$ 이므로 주어진 식이 성립한다. (ii) $n=k(k\geq 2)$ 일 때, 주어진 식이 성립한다고 가정하면 $\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\cdots\left(1+\frac{1}{k}\right)=\frac{k+1}{2}$ 이므로 양변 에 $\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\cdots\left(1+\frac{1}{k}\right)\left(1+\frac{1}{k+1}\right)$ $=\frac{k+1}{2}\left(1+\frac{1}{3}\right)\cdots\left(1+\frac{1}{k}\right)\left(1+\frac{1}{k+1}\right)$ $=\frac{k+1}{2}\left(1+\frac{1}{k+1}\right)=\frac{k+2}{2}=\frac{\square+1}{2}$ 따라서 $n=k+1$ 일 때에도 주어진 식이 성립한다. (i), (ii) 에 의하여 $n\geq 2$ 인 모든 자연수 n 에 대하여 주어진 등식이 성립한다.

🔰 답: _____

31. log 7.62 = 0.8820, log 2.955 = 0.4705 일 때, ∜0.0762 를 계산하면 0.abcd이다. 이때, a+b+c+d의 값은? (단, a, b, c,는 0보다 크거나 같고 10보다는 작은 정수이다.)

① 18 ② 19 ③ 20 ④ 21 ⑤ 22

32. A, B두 그릇에 농도가 각각 10%, 20% 인 소금물이 각각 100g 씩들어 있다. A 그릇의 소금물 25g을 덜어 B 그릇에 담아 잘 섞은 다음 B 그릇의 소금물 25g을 다시 덜어 A 그릇에 담아 잘 섞는다. 이와 같은 작업을 n회 시행하였더니 두 그릇의 소금물의 농도의 차가 5% 이하가 되었을 때, 자연수 n의 최솟값을 구하여라. (단, log 2 = 0.3010, log 3 = 0.4771)

답: ____

5% 인 물가상승률이 2024년까지 10년 동안 매년 같은 비율로 지속된다고 하자. 임금의 물가상승률을 감안하여 2024년 임금이 2007년 현재의 임금에 대하여 실질적으로 3배 인상되었다고 하려면 매년 x%의 매출 신장이 있어야 한다고 한다. 이때, 10x의 값을 구하여라. (단, 인원수의 변화는 없고, 매출 신장률도 매년 일정하다. 또한 $10^{0.477} = 3$, $10^{0.0689} = 1.172$, $10^{0.0727} = 1.182$ 로 계산하여라.)

33. 매년 매출액의 30%를 임금으로 지급하는 회사가 있다. 2014년 현재

수 0 1 2 3 4 5 6 7 8 9 1.0 .0000 .0043 .0086 .0128 .0170 .0212 .0253 .0294 .0334 .0374 1.1 .0414 .0453 .0492 .0531 .0569 .0607 .0645 .0682 .0719 .0755

