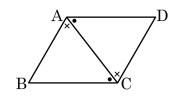
1. 다음은 평행사변형의 성질을 증명하는 과정이다. 어떤 성질을 증명한 것인가?



 $\overline{AB} / / \overline{CD}$ 이므로  $\angle BAC = \angle DCA \cdots \bigcirc$ 

 $\overline{AD} / / \overline{BC}$ 이므로  $\angle BCA = \angle DAC \cdots \bigcirc$ 

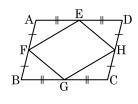
 $\bigcirc$ ,  $\bigcirc$ ,  $\bigcirc$ 에 의해서  $\triangle$ ABC  $\equiv$   $\triangle$ CDA( ASA 합동)

- $\therefore \ \angle A = \angle C, \angle B = \angle D$
- ① 평행사변형에서 두 쌍의 엇각의 크기가 각각 같다.
- ② 평행사변형에서 두 쌍의 대변의 길이는 각각 같다.
- ③ 평행사변형에서 두 쌍의 대각의 크기가 각각 같다.
- ④ 평행사변형에서 두 쌍의 대변이 각각 평행하다.
- ⑤ 평행사변형에서 두 대각선은 서로 다른 것을 이등분한다.

해설

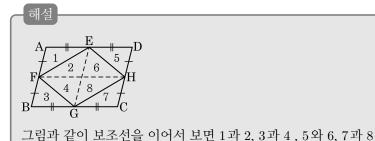
평행사변형에서 두 쌍의 대각의 크기가 각각 같음을 증명하는 과정이다.

2. 다음 그림의 □ABCD 는 평행사변형이다. 각 변의 중점 E, F, G, H 를 연결하여 만든 □EFGH 의 넓이가 24 일 때, □ABCD 의 넓 이를 구하여라.

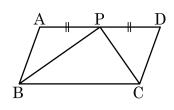




➢ 정답: 48



의 넓이가 같다. ∴ □ABCD = 2 × 24 = 48 **3.** 다음 그림과 같은 평행사변형 ABCD 에서 점 P 는  $\overline{AD}$  의 중점이다.  $\overline{BC} = 2\overline{AB}$  일 때,  $\angle BPC$  의 크기를 구하여라.



답 :▷ 정답 : ∠BPC = 90°

$$\overline{\mathrm{AD}} = 2\overline{\mathrm{AB}}$$
 이므로

해설

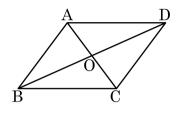
$$\overline{AB} = \overline{AP} = \overline{PD}$$
  
 $\angle ABP = \angle APB, \angle DPC = \angle DCP$ 

$$\angle A + \angle D = 180$$
 ° 이므로  
2 $\angle APB + 2\angle DPC = 180$  °

$$\therefore \angle APB + \angle DPC = 90^{\circ}$$

$$\angle BPC = 180^{\circ} - (\angle APB + \angle DPC)$$
  
=  $180^{\circ} - 90^{\circ} = 90^{\circ}$ 

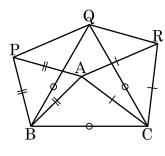
**4.** 다음 그림과 같은 평행사변형 ABCD 에 대하여 다음 중 옳지 <u>않은</u> 것을 골라라.



- $\bigcirc$   $\angle ABC + \angle BCD = 180^{\circ}$
- $\ \, \ \, \underline{\widehat{AB}}=\overline{DC}$
- $\bigcirc$   $\angle ADB = \angle ACB$
- $\bigcirc$   $\angle BAC = \angle ACD$
- 답:
- ▷ 정답: ⑤

 $\overline{\mathrm{AD}} /\!/ \overline{\mathrm{BC}}$  이므로  $\angle \mathrm{ADB} = \angle \mathrm{CBD}$ 

**5**. 다음 그림은 △ABC 의 세 변을 각각 한 변으로 하는 정삼각형을 겹쳐 그린 것이다. 즉,  $\triangle$ ABP,  $\triangle$ BCQ,  $\triangle$ ACR 은 모두 정삼각형이다. 다음 중 옳은 것을 보기에서 모두 고르면?



- $\bigcirc$   $\angle QPB = 90^{\circ}$
- $\triangle$   $\triangle$ ABC  $\equiv$   $\triangle$ RQC
- $\bigcirc$   $\angle PBQ = \angle ACB$
- $\overline{PQ} = \overline{RC}$
- □ □QPAR 는 평행사변형
- $(1) (\neg), (\square), (\square)$   $(2) (\neg), (\square), (\square)$

3 L, Z, D

- 4 7, 2, 0
- (5) (E), (E), (D)



 $\triangle$ ABC 와  $\triangle$ RQC 에서  $\overline{AC} = \overline{RC}$ ,

 $\overline{BC} = \overline{QC}$ ,  $\angle ACB = \angle RCQ (= 60^{\circ} - \angle QCA)$ 이므로  $\triangle ABC \equiv \triangle RQC \cdots$  (

똑같은 이유로  $\triangle ABC \equiv \triangle PBQ$ 

따라서  $\triangle PBQ \equiv \triangle RQC$  이므로  $\overline{PQ} = \overline{RC} \cdots \bigcirc$ 

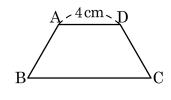
또, □QPAR 는 평행사변형 · · · 回

 $(\because \overline{AR} = \overline{PQ}, \ \overline{PA} = \overline{QR})$ 

① ∠QPB = 90° (근거 없음)

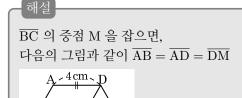
© ∠PBQ ≠ ∠ACB 이고, △ABC ≡ △PBQ 이다.

**6.** 등변 사다리꼴 ABCD 에서  $\overline{AB} = \overline{AD}$  이고,  $\overline{BC} = 2\overline{AD}$  일 때,  $\angle C$  를 구하시오.



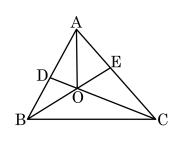
▶ 답:

▷ 정답: 60°



따라서  $\Delta DMC$  는 정삼각형이므로  $\angle C = 60^{\circ}$ 이다.

다음 그림과 같은  $\triangle ABC$ 에서  $\overline{AE}:\overline{EC}=3:4,\overline{BO}:\overline{OE}=3:2$ 7. 이다. ΔEOC의 넓이가 8cm<sup>2</sup>일 때, ΔABC의 넓이는?



- $(1) 20 \text{cm}^2$ ②  $24 \text{cm}^2$ (3) 28cm<sup>2</sup>
- $35 \,\mathrm{cm}^2$

$$\triangle EOC = \triangle CBE \times \frac{2}{2+3} = 8(cm^2)$$

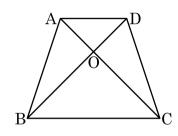
 $\therefore \triangle CBE = 20(cm^2)$ ΔABE와 ΔBCE에서 높이는 같고 밑변은 3:4이므로

$$\triangle CBE = \triangle ABC \times \frac{4}{3+4} = 20(\text{cm}^2)$$

 $\therefore \triangle ABC = 35cm^2$ 

 $4) 32 cm^2$ 

8. 다음 그림과 같이  $\overline{AD}//\overline{BC}$  인 사다리꼴 ABCD 에서  $\overline{OA}:\overline{OC}=1:2$ 이다. △AOD = 48cm<sup>2</sup> 일 때, □ABCD 의 넓이는?



 $432 \mathrm{cm}^2$ 

 $2480 \text{cm}^2$ 

(3) 562cm<sup>2</sup>

 $\bigcirc 4 600 \text{cm}^2$ 

(5) 642cm<sup>2</sup>



- ΔAOD : ΔCOD = 1 : 2 이므로
- 이때  $\triangle ABD = \triangle ACD$  이므로

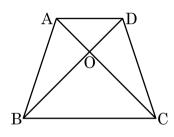
 $\triangle ABO = \triangle COD = 96 \text{ cm}^2$ 또.  $\triangle ABO : \triangle COB = 1 : 2 이므로$ 

 $48 : \triangle COD = 1 : 2 \therefore \triangle COD = 96 \text{ cm}^2$ 

 $96: \triangle COB = 1:2 \therefore \triangle COB = 192 \text{ cm}^2$ 

 $\therefore \Box ABCD = 48 + 96 + 96 + 192 = 432 \text{ cm}^2$ 

9. 다음 그림과 같이  $\overline{AD}//\overline{BC}$  인 사다리꼴 ABCD 에서  $\overline{OA}$  :  $\overline{OC}=1:2$  이다.  $\Box ABCD$  의 넓이가 36 일 때,  $\triangle BCO$  의 넓이를 구하여라.



▶ 답:

➢ 정답: 16

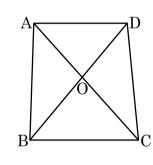
(△AOD의 넓이) = A 라 하자.

 $\triangle AOD : \triangle COD = 1 : 2$  이므로 A:  $\triangle COD = 1 : 2$   $\therefore \triangle COD = 2A$ 

이때  $\triangle ABD = \triangle ACD$  이므로

△ABO = △COD = 2A 또, △ABO : △BCO = 1 : 2 이므로 2A : △BCO = 1 : 2 ∴ △BCO = 4A

□ABCD = A + 2A + 2A + 4A = 36 ∴ A = 4 따라서 △BCO = 4A = 16 이다. 10. 다음 그림은  $\overline{AD}$   $//\overline{BC}$  인 사다리꼴이다.  $\triangle ACD = 36 \text{cm}^2$ ,  $\triangle ABO = 20 \text{cm}^2$  일 때.  $\triangle AOD$  의 넓이를 구하여라.



 $\mathrm{cm}^2$ 

답:

정답: 16 cm²

따라서  $\triangle AOD = 36 - 20 = 16 cm^2$ 

#### **11.** 다음 그림의 평행사변형 ABCD 에서 a+b의 값은?

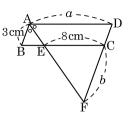
19cm

4) 22cm

- ⑤ 23cm
- ② 20cm

③ 21cm

 $\triangle DAF$  도 이등변삼각형이 되고, □ABCD 에서  $\overline{AB} = \overline{DC}$  이

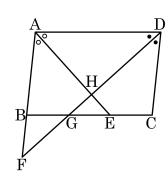


$$\angle BAE = \angle CFE \ (\because ) 었각)$$
  $\triangle CEF 는 이등변삼각형이 되어  $\overline{CE} = \overline{CF}, \ b = 8cm$$ 

프로 
$$\overline{AD} = \overline{DF} = a = b + \overline{DC} = 8 + 3 = 11$$
cm

$$\therefore a + b = 11 + 8 = 19(cm)$$

# **12.** 다음 그림에서 $\overline{AE}$ , $\overline{DF}$ 는 각각 $\angle A$ , $\angle D$ 의 이등분선이다. $\angle ABC = 84^\circ$ 일 때, $\angle AEC + \angle DCE$ 의 크기를 구하여라.



해설
$$\angle A = 180^{\circ} - \angle B = 180^{\circ} - 84^{\circ} = 96^{\circ}$$

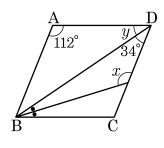
$$\angle AEC = 180^{\circ} - \frac{1}{2} \angle A$$

$$= 180^{\circ} - \frac{1}{2} \times 96^{\circ}$$

$$\angle C = \angle A = 96^{\circ}$$
  
  $\therefore \angle AEC + \angle DCE = 132^{\circ} + 96^{\circ} = 228^{\circ}$ 

 $= 180 \circ -48 \circ = 132 \circ$ 

**13.** 다음 사각형 ABCD 가 평행사변형이 되도록  $\angle x$ ,  $\angle y$  의 값을 구하여라.



답:  $\triangleright$  정답: ∠ $x = 129^{\circ}$ 

> 정답: ∠y = 34°

주어진 조건에 의해서 □ABCD 가 평행사변형이 되려면 112°+  $2y + 34^{\circ} = 180^{\circ}$  가 성립해야 한다.

삼각형의 내각의 합은 180° 이므로  $\angle x = 17^{\circ} + 112^{\circ} = 129^{\circ}$ 

따라서  $\angle y = 34^\circ$  이다.

 $\overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$  이므로  $\bullet = \frac{34^{\circ}}{2} = 17^{\circ}$  이다.

이다.

따라서  $\angle x = 129^{\circ}$ ,  $\angle y = 34^{\circ}$  이다.

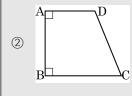
### **14.** 다음 중 평행사변형이 <u>아닌</u> 것은?

- ①  $\overline{AB} = \overline{CD}$ ,  $\overline{AB} // \overline{CD}$
- $\bigcirc$   $\overline{AD} // \overline{BC}$ ,  $\angle A = \angle B = 90^{\circ}$ 
  - $\bigcirc$   $\angle A = \angle C, \angle B = \angle D$
  - $\overline{AB} = \overline{CD}, \overline{AD} = \overline{BC}$
  - $\bigcirc$   $\overline{AB} // \overline{CD}$ ,  $\overline{AD} // \overline{BC}$

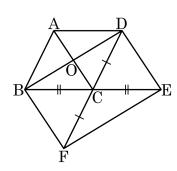
#### 해설

평행사변형이 되는 조건 다음의 각 경우의 어느 한 조건을 만족하면 평행사변형이 된다.

- (1) 두 쌍의 대변이 각각 평행하다.(정의)
- (2)두 쌍의 대변의 길이가 각각 같다.
- (3) 두 쌍의 대각의 크기가 각각 같다.
- (4) 두 대각선이 서로 다른 것을 이등분한다.
- (5) 한 쌍의 대변이 평행하고 그 길이가 같다.



**15.** 평행사변형 ABCD 의 두 변 BC, DC 의 연장선 위에  $\overline{BC} = \overline{CE}$ ,  $\overline{DC} = \overline{CF}$  가 되도록 두 점 E, F 를 잡을 때,  $\Box ABCD$ 를 제외한 사각 형이 평행사변형이 되는 조건은 보기에서 모두 몇 개인가?



- 두 쌍의 대변이 각각 평행하다.
- 戶 쌍의 대변의 길이가 각각 같다.
- © 두 쌍의 대각의 크기가 각각 같다.
- ② 두 대각선이 서로 다른 것을 이등분한다.
- ① 한 쌍의 대변이 평행하고 그 길이가 같다.
- ① 1개

- 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

해설

평행사변형이 되는 조건은 □ABFC,□ACED가 평행사변형이되 는 조건 ②과 □BFED가 평행사변형이 되는 조건 ②로 2개이다. 16. AB = 100 m 인 평행사변형 ABCD 를 점 P 는 A 에서 B 까지 매초 5 m의 속도로, 점 Q 는 7 m의 속도로 C 에서 D 로 이동하고 있다. P 가 A 를 출발한 4 초 후에 Q 가 점 C 를 출발한다면 □APCQ가 평행사변형이 되는 것은 Q 가 출발한 지 몇 초 후인가?

① 5 초 ② 8 초 ③ 10 초 ④ 12 초 ⑤ 15 초

 $\square APCQ$  가 평행사변형이 되려면  $\overline{AP} = \overline{CQ}$  가 되어야 하므로

Q 가 이동한 시간을 
$$x$$
 (초) 라 하면 P 가 이동한 시간은  $x+4$  (초)이다. 
$$\overline{AP} = 5(x+4), \ \overline{CQ} = 7x, \ 5(x+4) = 7x$$
$$\therefore x = 10 \ (초)이다.$$

17. 평행사변형 ABCD 의 네 각의 이등분선의 교점으로 만들어지는 사각 형 OPQR는 어떤 사각형인가?



- ① 평행사변형
- ② 마름모

③ 등변사다리꼴

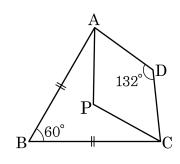
④ 직사각형

⑤ 정사각형

$$\angle BAD + \angle ADC = 180$$
°이므로  
 $\angle QAD + \angle ADQ = 90$ °

: 직사각형

18. 다음 그림에서  $\square APCD$ 는 마름모이다.  $\overline{AB} = \overline{BC}$ 일 때,  $\angle BAD$ 의 크기를 구하여라.

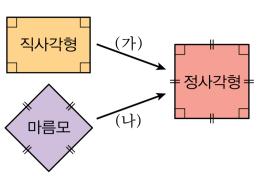


AC를 그으면

 $\angle DAC = (180^{\circ} - 132^{\circ}) \div 2 = 24^{\circ}$  $\angle BAC = (180^{\circ} - 60^{\circ}) \div 2 = 60^{\circ}$ 

 $\therefore \angle BAD = 60^{\circ} + 24^{\circ} = 84^{\circ}$ 

**19.** 다음 그림에서 정사각형이 되기 위해 추가되어야 하는 (가), (나)의 조건으로 알맞은 것을 고르면?



- ① (가) 이웃하는 두 각의 크기가 같다.(나) 두 대각선이 서로 수직이다.
- ② (가) 두 대각선의 길이가 같다.(나) 한 내각의 크기가 90°이다.
- ③ (가) 두 대각선이 서로 수직이다. (나) 이웃하는 두 변의 길이가 같다.
- ④ (가) 두 대각선의 길이가 같다.(나) 이웃하는 두 변의 길이가 같다.
- (⑤) (가) 두 대각선이 서로 수직이다.(나) 이웃하는 두 각의 크기가 같다.

#### 해설

여러 가지 사각형의 대각선의 성질

- (1) 평행사변형의 두 대각선은 서로 다른 것을 이동분한다.
- (2) 직사각형의 두 대각선은 길이가 같고, 서로 다른 것을 이동부하다.
- (3) 마름모의 대각선은 서로 다른 것을 수직이등분한다.
- (4) 정사각형의 두 대각선은 길이가 같고, 서로 다른 것을 수직 이동분한다.
- (5) 등변사다리꼴의 두 대각선은 길이가 같다.

- **20.** 다음 중 정사각형의 성질이지만 마름모의 성질은 <u>아닌</u> 것은?
  - ① 두 대각의 크기가 각각 같다.
  - ② 두 대각선이 서로 직교한다.
  - ③ 대각선에 의해 넓이가 이등분된다.
  - ④ 두 대각선의 길이가 같다.
  - ⑤ 내각의 크기의 합이 360°이다.

- 해설

마름모가 정사각형이 되기 위해서는 두 대각선의 길이가 같아야 한다.

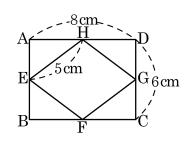
# **21.** 다음 설명 중 옳지 <u>않은</u> 것은?

- ① 두 대각선이 서로 다른 것을 이등분하는 사각형은 등변사다리꼴이다.
  - ② 두 대각선의 길이가 같은 평행사변형은 직사각형이다.
  - ③ 등변사다리꼴의 두 대각선은 길이가 같다.
  - ④ 두 대각선이 서로 수직인 평행사변형은 마름모이다.
  - ⑤ 두 대각선이 서로 다른 것을 수직이등분하는 평행사변형은 마름모이다.

# 해설

① 두 대각선이 서로 다른 것을 이등분하는 사각형은 평행사변형이다.

# 22. 다음 그림의 직사각형 ABCD 의 중점을 연결한 사각형을 □EFGH 라고 할 때, 다음 중 옳지 않은 것은?

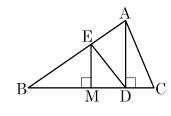


- ①  $\overline{\mathrm{EH}}//\overline{\mathrm{FG}}$
- $\bigcirc$   $\overline{EF} = 5cm$
- ③ 사각형 EFGH 의 둘레의 길이는 20cm 이다.
- ④ 사각형 EFGH 의 넓이는 25cm² 이다.
- ⑤ 사각형 EFGH 는 마름모이다.

사각형 EFGH 의 넓이는 사각형 ABCD 에서 모서리의 삼각형의 넓이를 뺀 값이다.

$$(6 \times 8) - 4 \times \left(\frac{1}{2} \times 4 \times 3\right) = 48 - 24 = 24 \text{ (cm}^2)$$

**23.** 다음 그림에서  $\overline{BM} = \overline{MC}$ ,  $\overline{EM} \bot \overline{BC}$ ,  $\overline{AD} \bot \overline{BC}$ 이다.  $\triangle ABC$ 의 넓이가  $60 \text{cm}^2$ 일 때,  $\Box AEDC$ 의 넓이는?



 $30 \mathrm{cm}^2$ 

 $\bigcirc$  20cm<sup>2</sup>

 $25 \text{cm}^2$ 

 $4 35 \text{cm}^2$ 

 $\bigcirc$  40cm<sup>2</sup>

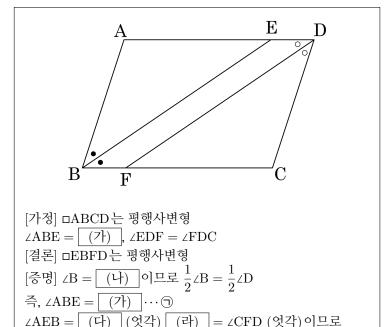
해설

 $\overline{\rm EM}$  과  $\overline{\rm AD}$ 가 모두  $\overline{\rm BC}$ 에 수직이므로  $\overline{\rm EM}$   $//\overline{\rm AD}$  따라서 밑변과 높이가 같으므로  $\Delta {\rm AED} = \Delta {\rm AMD}$ 이다.

 $\Box AEDC = \triangle AED + \triangle ADC = \triangle AMD + \triangle ADC = \triangle AMC$ 

 $\therefore \Box AEDC = \frac{1}{2} \triangle ABC = 30cm^2$ 

24. 다음은 평행사변형 ABCD에서 ∠B, ∠D의 이등분선이 AD, BC와 만나는 점을 각각 E, F라 할 때, □EBFD가 평행사변형임을 증명하는 과정이다. (가) ~(마)에 들어갈 것으로 옳지 않은 것은?



つ, ⓒ에 의하여 □EBFD는 평행사변형이다.

 $\angle DEB = \angle 180^{\circ} - \angle AEB = \boxed{(\Box)} \cdots \bigcirc$ 

① (가): ∠EBF ② (나): ∠D ③ (다): ∠ABE

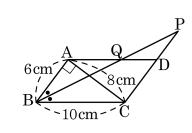
④ (라): ∠EDF ⑤ (마): ∠DFB

 $\angle AEB = \angle CFD$ 

해설

③ ∠AEB와 ∠EBF는 엇각으로 같다.

**25.** 다음 그림과 같은 평행사변형 ABCD 에서 □QBCD 의 넓이를 구하여라.



 ${\rm cm}^2$ 

답 :
 > 정답 : 33.6 cm²

$$\frac{1}{2} \times 6 \times 8 = \frac{1}{2} \times 10 \times h, \ h = 4.8 \text{ (cm)}$$

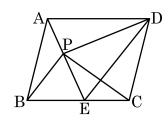
$$\triangle ABQ$$
 에서  $\overline{AQ} = \overline{AB} = 6 \text{ (cm)}$  이므로 
$$\triangle ABQ = \frac{1}{2} \times 6 \times 4.8$$

 $= 33.6 \, (\mathrm{cm}^2)$ 

$$= 14.4 \, (\text{cm}^2)$$

$$\therefore \Box QBCD = 10 \times 4.8 - 14.4$$
  
= 48 - 14.4

**26.** 다음 그림의 평행사변형 ABCD에서  $\overline{AP}$ :  $\overline{PE} = 3$ : 4이고  $\triangle PBC = 40 \text{cm}^2$ 일 때,  $\triangle APD$ 의 넓이를 구하여라.



 $cm^2$ 

내부의 한 점 P에 대하여  $\triangle PAB + \triangle PCD = \triangle PAD + \triangle PBC$ 

 ► 답:

 ▷ 정답:
 30 cm²

이다. 
$$\Delta PAD + \Delta PBC = \frac{1}{2} \Box ABCD \cdots \bigcirc$$

$$\triangle PAD + \triangle PED = \frac{1}{2} \square ABCD \cdots \square$$

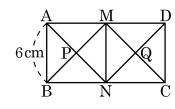
$$\triangle PAD : \triangle PED = 3 : 4$$

$$\triangle PAD = \frac{40 \times 3}{4}$$

 $\triangle PAD: 40 = 3: 4$ 

$$\therefore \triangle PAD = 30(cm^2)$$

**27.** 다음 직사각형 ABCD에서  $\overline{AD}=2\overline{AB}$ 이다. 점 M, N이  $\overline{AD}$ ,  $\overline{BC}$ 의 중점일 때,  $\square$ MPNQ의 넓이를 구하여라.



답: <u>cm<sup>2</sup></u>

▷ 정답: 18 cm²

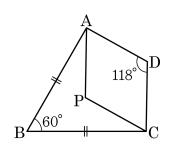
$$\overline{\mathrm{AB}} = \overline{\mathrm{AM}}$$
이므로

 $\triangle MPN = \frac{1}{4} \square ABNM$ 

 $\Box MPNQ = \frac{1}{4}\Box ABCD$ 

$$= \frac{1}{4} \times 12 \times 6$$
$$= 18 \text{ (cm}^2\text{)}$$

**28.** 다음 그림에서 □APCD는 마름모이다.  $\overline{AB} = \overline{BC}$ 일 때, ∠BAD의 크기를 구하여라.



답:

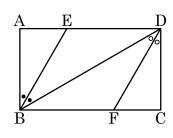
▷ 정답: 91°

AC를 그으면

 $\angle DAC = (180^{\circ} - 118^{\circ}) \div 2 = 31^{\circ}$  $\angle BAC = (180^{\circ} - 60^{\circ}) \div 2 = 60^{\circ}$ 

∴  $\angle$ BAD = 60 ° + 31 ° = 91 °

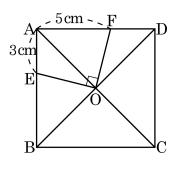
**29.** 다음 직사각형 ABCD에서  $\overline{BE}$ ,  $\overline{DF}$ 는 각각  $\angle$ ABD,  $\angle$ BDC의 이등분 선이다.  $\overline{BE} = \overline{BF}$ 일 때,  $\angle$ BED의 크기를 구하여라.



$$\angle ABD = \angle CDB \ ()$$
 ()  $BE = BF \ | \Box E \angle EBD = \angle DBF = 30^{\circ}$   $\angle BED = 180^{\circ} - 60^{\circ} = 120^{\circ}$ 

**30.** 정사각형 ABCD 에서  $\angle EOF = 90^\circ$  이고  $\overline{AE} = 3 \mathrm{cm}, \ \overline{AF} = 5 \mathrm{cm}$  이다.

정사각형 ABCD 의 넓이를 구하여라.



 $cm^2$ 

▷ 정답: 64 cm²

답:

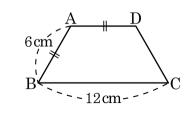
 $\triangle$ EOA 와 $\triangle$ FOD 에서  $\overline{AO}=\overline{DO},$   $\angle$ EAO =  $\angle$ FDO = 45°,  $\angle$ EOA =  $\angle$ FOD 이므로

△EOA ≡ △FOD(ASA 합동) ∴ EA = FD

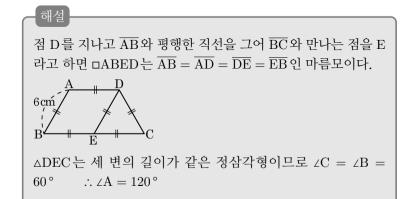
 $\therefore \overline{AD} = \overline{AF} + \overline{AE} = 8cm$ 

 $\therefore \Box ABCD = 8 \times 8 = 64 cm^2$ 

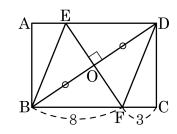
**31.** 다음 그림과 같은 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서  $\angle B = \angle C$ ,  $\overline{AB} = \overline{AD} = 6$  cm,  $\overline{BC} = 12$  cm 일 때,  $\angle A$  의 크기를 구하여라.



답:



32. 다음 그림과 같은 직사각형 ABCD의 대각선 BD의 수직이등분선과 AD, BC와의 교점을 각각 E, F일 때, □EBFD의 둘레의 길이를 구하여라.

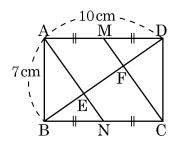


<u>cm<sup>2</sup></u>

➢ 정답: 32<u>cm²</u>

해설

 $\overline{\text{EF}} \perp \overline{\text{BD}}$ 이므로  $\neg \text{EBFD}$ 는 마름모이다. 따라서 둘레는  $4 \times 8 = 32 (\text{cm}^2)$ 이다. **33.** 다음 그림에서  $\square ABCD$ 는 직사각형이고, 점 M, N은 각각  $\overline{AD}$ ,  $\overline{BC}$ 의 중점이다.  $\overline{AD} = 10 \, \text{cm}$ ,  $\overline{AB} = 7 \, \text{cm}$  일 때,  $\Box ENCF$  의 넓이는?



 $\frac{35}{2}$  cm<sup>2</sup>

① 
$$\frac{33}{2}$$
 cm<sup>2</sup>  
④  $18$  cm<sup>2</sup>

② 
$$17 \, \text{cm}^2$$

 $\overline{MN}$ 과  $\overline{EF}$ 의 교점을 O라 하면

 $\triangle$ MOF =  $\triangle$ ENO 이므로

 $\Box \mathrm{EFCN} = \triangle \mathrm{MNC} = \triangle \mathrm{ABN}$ 

$$= \frac{1}{4} \square ABCD = \frac{1}{4} \times 7 \times 10$$