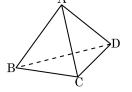
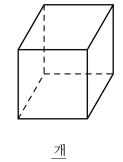
다음 그림에서 선분 AC 와 면 BCD 의 교점을 1. 구하여라.



▶ 답: ➢ 정답: 점 C

선분 AC 와 면 BCD 의 교점은 점 C 이다.

2. 사각기둥의 교점과 교선의 개수를 구하여라.



 ▶ 답:
 개

 ▷ 정답:
 교점 8 개

<mark>▷ 정답</mark>: 교선 12<u>개</u>

▶ 답:

교점은 선과 선 또는 선과 면이 만나서 생기는 점이고 교선은

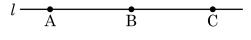
면과 면이 만나서 생기는 선이므로 선이 만나서 생기는 교점은 8 개, 사각형 면끼리 만나는 교선은 12 개

- 3. 구와 평면이 만나서 생기는 교선의 모양은?

① 직선 ② 선분 ③ 반직선 ④ 원 ⑤ 직사각형

구와 평면이 만나서 생기는 교선의 모양은 원이다.

4. 다음 그림과 같이 직선 l 위에 세 점 A , B , C 가 있다. 다음 중 옳은



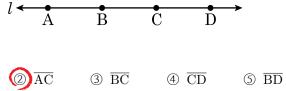
- $\textcircled{4} \ \overrightarrow{AB} = \overline{AB}$
- ① $\overline{BA} = \overline{BC}$ ② $\overline{AB} = \overline{BA}$ ③ $\overrightarrow{AC} = \overrightarrow{CA}$

① $\overline{\mathrm{BA}} \neq \overline{\mathrm{BC}}$

해설

- ③ 시작점과 방향이 다르므로 $\overrightarrow{AC} \neq \overrightarrow{CA}$ ④ 반직선과 직선은 다르다.
- ⑤ 반직선과 직선은 다르다.

5. 다음 그림과 같이 직선 l 위에 네 점 A, B, C, D가 차례대로 있을 때, $\overrightarrow{\mathrm{AD}}$ 과 $\overrightarrow{\mathrm{CA}}$ 의 공통부분은?



해설

② \overrightarrow{AD} 와 \overrightarrow{CA} 의 공통부분은 \overrightarrow{AC} 이다.

6. 다음과 같이 평면 위의 세 점을 모두 지나는 직선의 개수는 몇 개인가?

•A

 $\bullet C$

③ 3 개

В•

④ 무수히 많다. ⑤ 없다.

① 1개 ② 2개

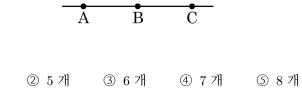
일직선 위에 놓여있지 않은 세 점을 동시에 지나는 직선은 존재

해설

하지 않는다.

7. 다음 그림과 같이 한 직선 위의 세 점과 직선 밖의 한 점이 있다. 이 네 개의 점으로 결정되는 직선의 개수는?

D

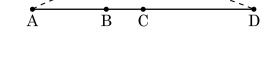


해설

AD, BD, CD, AC

① 4 개 8. 다음 그림에서 $\overline{AP} = \overline{PQ} = \overline{QB}$ 일 때, 다음 보기 중 옳지 <u>않은</u> 것은? $\overline{A} \qquad \overline{P} \qquad \overline{Q} \qquad \overline{B}$

다음 그림에서 $3\overline{AB}=\overline{AD},\ 4\overline{BC}=\overline{BD},\ \overline{AD}=36\,\mathrm{cm}$ 일 때, \overline{CD} 의 9. 길이는?

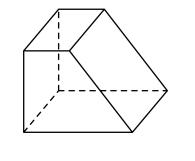


②18cm ① 16cm ③ 20cm ④ 22cm ⑤ 24cm

해설

 $\overline{AB}=12\,\mathrm{cm},\ \overline{BD}=36-12=24(\,\mathrm{cm})$ 따라서 $\overline{CD}=18\,\mathrm{cm}$ 이다.

10. 다음 그림과 같은 입체도형에서 교점의 개수를 a, 교선의 개수를 b 라고 할 때, a+b의 값은?



해설

① 14 ② 16

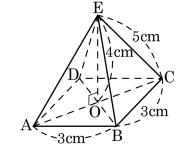
③ 18

4 19

320

a = 8, b = 12이므로 a + b = 20이다.

11. 다음 사각뿔을 보고 말한 것 중 옳지 <u>않은</u> 것은?



- 점 D에서 선분 AB에 내린 수선의 발은 점 A이다.
 선분 AD와 수직인 선분은 선분 AB이다.
- ③ 점 C에서 선분 AD에 이르는 거리는 \overline{AB} 의 길이와 같다. ④ 교점은 4개이고 교선은 8개이다.
- ③ BD⊥EO

④ 교점은 5개, 교선은 8개이다.

12. 원기둥에서 평면의 개수를 a, 곡면의 개수를 b, 교점의 개수를 c, 교선 의 개수를 d라고 할 때, a+b+c+d의 값을 구하여라.

▶ 답:

▷ 정답: 5

---원기둥에서 원모양의 두 밑면은 평면이고, 직사각형 모양의 옆

면은 곡면이다. 따라서 $a=2,\ b=1,\ c=0,\ d=2$ 이므로 a+b+c+d=2+1+0+2=5

13. 다음 그림과 같이 직선 l 위에 네 점 A, B, C, D 가 있을 때 \overrightarrow{AD} 와 \overrightarrow{CB} 의 공통 부분을 구하여라.(단, 선분 $\overrightarrow{AB} = \overline{AB}$ 로 표기)

l A B C D

답:

<mark>▷ 정답</mark>: CA 또는 AC

 \overrightarrow{AD} 와 \overrightarrow{CB} 의 공통 부분은 \overrightarrow{AC} 이다.

해설

 ${f 14}$. 다음 그림과 같이 직선 ${\it l}$ 위의 세 점 ${\it A},{\it B},{\it C}$ 가 차례로 있을 때, 다음 중 옳지 <u>않은</u> 것은?

> В Č

- ① $\overrightarrow{AC} = \overrightarrow{CA}$ ② $\overrightarrow{AB} = \overrightarrow{BC}$ ③ $\overrightarrow{AB} = \overrightarrow{AC}$

해설

 \overrightarrow{AC} 와 \overrightarrow{CA} 는 시작점이 다른 반직선이다.

15. 다음 그림에서 옳은 것을 <u>모두</u> 고르면?

 $l \xrightarrow{\bullet} \stackrel{\bullet}{A} \stackrel{\bullet}{B} \stackrel{\bullet}{C}$ Ď

- ⑥AB 와 CD 는 같다.
- ② BA 와 BC 는 같다.
- ③ $\overline{BC} = \overline{CD}$ 이다.
- 4 \overrightarrow{DA} 와 \overrightarrow{DC} 는 같다. ⑤ \overrightarrow{AC} 와 \overrightarrow{CA} 의 공통부분은 \overline{AC} 이다.

- ② \overrightarrow{BA} 와 \overrightarrow{BC} 는 방향이 다르다. ③ $\overrightarrow{BC} \neq \overrightarrow{CD}$ ⑤ \overrightarrow{AC} 와 \overrightarrow{CA} 의 공통부분은 \overrightarrow{CA} 이다.

16. 다음 보기 중 옳지 <u>않은</u> 것을 모두 골라라. 보기 -

- ⊙ 한 점을 지나는 직선은 무수히 많이 그을 수 있다. ℂ 서로 다른 두 점을 지나는 직선은 하나 뿐이다.
- € 한 평면 위에는 무수히 많은 직선이 있다.
- ◉ 직선의 길이는 반직선의 길이의 2배이다. ◎ 직선 위에 점이 하나 뿐이다.

답:

답:

▷ 정답: ②

▷ 정답: ◎

② 직선의 길이는 반직선의 길이의 2배가 아니다. ◎ 직선위에 점이 무수히 많다.

 $\overrightarrow{\mathrm{AD}}$ 와 $\overrightarrow{\mathrm{CB}}$ 의 공통부분은 $\overrightarrow{\mathrm{AC}}$ 이다.

18. 한 평면 위에 네 점 A, B, C, D 가 있다. 이 중 어느 세 점도 나란히 일직선 위에 있지 않을 때, 이 점들 중 두 점을 지나는 직선은 모두 몇 개인지 구하여라.

개 ▷ 정답: 6<u>개</u>

해설

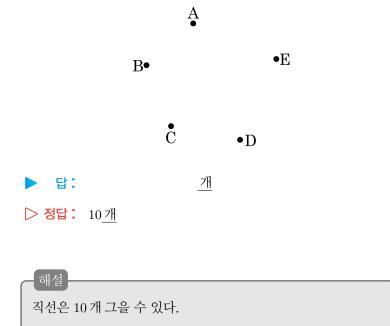
▶ 답:

 $\overleftrightarrow{\mathrm{AB}},\ \overleftrightarrow{\mathrm{AC}},\ \overleftrightarrow{\mathrm{AD}},\ \overleftrightarrow{\mathrm{BC}},\ \overleftrightarrow{\mathrm{BD}},\ \overrightarrow{\mathrm{CD}}$ 이므로 6개이다.

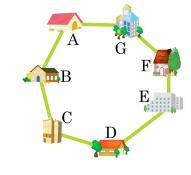
♣ •D B• Č Ĉ ① 4개 ② 5개 ③ 6개 ④ 7개 ⑤ 8개 해설 직선을 그어 보면 6개이다.

19. 다음 그림의 4개의 점으로 그을 수 있는 서로 다른 직선의 개수는?

20. 다음 그림과 같이 평면 위에 다섯 개의 점 A, B, C, D, E 중 두 점을 지나는 직선을 그었을 때, 몇 개나 그을 수 있는지 구하여라.



21. 다음 그림과 같은 A에서 G까지 7개 마을 사이에 서로 직통으로 왕래할 수 있는 도로를 만들려고 한다. 이 때, 만들어지는 도로는 모두 몇개인가?(단, 도로는 선분으로 한다.)



④ 18개

① 14개 ② 15개 ③ 16개

⑤ 21 개

점 A 에서 만들 수 있는 도로는 자기 자신을 제외한 6개, 점 B 에서

해설

만들 수 있는 도로는 5개, 점 C에서 만들 수 있는 도로는 4개, 점 D에서 만들 수 있는 도로는 3개, 점 E에서 만들 수 있는 도로는 2개, 점 E에서 만들 수 있는 도로는 2개, 점 E에서 만들 수 있는 도로는 1개이므로 7개 마을 사이에 직통으로 왕래할 수 있는 도로는 6+5+4+3+2+1=21(7)이다.

22. 다음 그림에는 서로 다른 점 A, B, C, D 가 일직선 위에 놓여 있다. 서로 다른 두 점을 택하여 만들 수 있는 반직선의 개수는 모두 몇 개인가?

A B C D

①6개 ②8개 ③10개 ④12개 ⑤20개

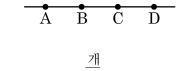
해설

AB, BC, CD, BA, CB, DC 이고, 모두 6개이다.

시작점이 다르고 방향도 다른 서로 다른 반직선은

23. 다음 그림과 같이 한 직선 위에 네 개의 점 A, B, C, D 와 직선 밖의 한 점 E 가 있을 때, 이 중 두 점을 골라 만들 수 있는 반직선의 개수를 구하여라.

Ē



정답: 14 <u>개</u>

-해설

답:

이고, 한 직선 위에 놓인 4 개의 점과 직선 밖의 점 E 로 정해지는 반직선은 AE, EA, BE, EB, CE, EC, DE, ED 이다. 따라서 모두 14 개이다.

한 직선 위에 놓인 서로 다른 반직선은 \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{BA} , \overrightarrow{CB} , \overrightarrow{DC}

24. 다음 그림과 같이 직선 l 위에 있는 네 점 A, B, C, D 중에서 두 점으로 만들 수 있는 직선의 개수, 반직선의 개수, 선분의 개수를 모두더하여라.

답:

➢ 정답: 13

두 점으로 만들 수 있는 직선은 오직 1 개뿐이다. 두 점으로 만들

해설

수 있는 반직선 \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{BA} , \overrightarrow{CB} , \overrightarrow{DC} 이므로 6 개이다. 또한, 두 점으로 만들 수 있는 선분 \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{BC} , \overrightarrow{BD} , \overrightarrow{CD} 이므로 6 개이다. 따라서 1+6+6=13이다.

25. 다음 설명 중 옳은 것을 모두 고르면?

- ⊙ 두 직선이 한 점에서 만날 때, 그 만나는 점을 두 직선의 교점이라 한다. ⓒ 반직선 AB와 반직선 BA는 겹치는 부분이 없다.
- ◎ 두 점 사이의 최단 거리는 두 점을 잇는 선분의
- 길이이다. ◎ 한 점을 지나는 직선은 한개 뿐이다.
- ◎ 두 개의 점을 지나는 직선은 무수히 많다.

해설

© 겹치는 부분은 선분 AB이다. ② 한 점을 지나는 직선은 무수히 많다.

- ◎ 두 개의 점을 지나는 직선은 한개 뿐이다.

26. 다음 그림에서 점 M은 \overline{AB} 의 중점이고, 점 N은 \overline{MB} 의 중점이다. 이때 $\overline{MN}=\square \overline{AB}=\square \overline{MB}$ 가 성립하도록 \square 안에 알맞은 수를 차례로 구한 것은?

A M N B

① 2, $\frac{1}{2}$ ② $\frac{1}{4}$, $\frac{1}{2}$ ③ 4, $\frac{1}{4}$ ④ $\frac{1}{2}$, $\frac{1}{4}$ ⑤ $\frac{1}{2}$, $\frac{1}{2}$

점 M은 $\overline{\mathrm{AB}}$ 의 중점이고, 점 N은 $\overline{\mathrm{MB}}$ 의 중점이므로 $\overline{\mathrm{MN}}$ =

 $\frac{1}{4}\overline{\text{AB}} = \frac{1}{2}\overline{\text{MB}}$ 이다.

27. 다음 그림에서 점 M, N이 선분 AB 의 3 등분점일 때, 다음 중 옳은 것은?

 $\overset{\bullet}{A} \quad \overset{\parallel}{M} \quad \overset{\bullet}{N} \quad \overset{\parallel}{B}$

- $\boxed{3}2\overline{\mathrm{AM}} = \overline{\mathrm{MB}}$

해설

- ① $\overline{AM} = 3\overline{AB}$ ② $\overline{AB} = 2\overline{MN}$ ④ $\overline{AB} = 2\overline{AN}$ ③ $\overline{MB} = \frac{1}{2}\overline{MN}$
- ① $3\overline{\mathrm{AM}} = \overline{\mathrm{AB}}$
- \bigcirc $\overline{AB} = 3\overline{MN}$ $3 2\overline{AM} = \overline{MB}$
- $\textcircled{4} \ \overline{AB} = \frac{3}{2} \overline{AN}$

28. 다음 그림과 같이 \overline{AC} 의 중점을 M, \overline{CB} 의 중점을 N 이라 할 때, \overline{MN} 의 길이는 \overline{AB} 의 길이의 몇 배인가?

A M C N B

 $\overline{\mathrm{MC}} = \frac{1}{2}\overline{\mathrm{AC}}$, $\overline{\mathrm{CN}} = \frac{1}{2}\overline{\mathrm{CB}}$ 따라서 $\overline{\mathrm{MN}} = \frac{1}{2}\overline{\mathrm{AB}}$ 이다.

2

29. 점 M은 \overline{AB} 의 중점이고, 점 N은 \overline{AM} 의 중점이다. $\overline{MN}=3$ 일 때, \overline{AB} 의 길이는?

① 12 ② 14 ③ 16 ④ 18 ⑤ 20

 $\overline{AM} = 3 \times 2 = 6, \overline{AB} = 6 \times 2 = 12$

해설

30. 다음 그림에서 두 점 M, N 은 각각 \overline{AB} , \overline{BC} 의 중점이고, \overline{AB} : \overline{BC} = $1:3, \overline{\mathrm{BC}}=18\mathrm{cm}$ 일 때, $\overline{\mathrm{MN}}$ 의 길이를 구하여라.

<u>cm</u>

▷ 정답: 12<u>cm</u>

 $\overline{AB}=rac{1}{3}\overline{BC}=6(\mathrm{cm})$ 이다. 두 점 M,N은 각각 \overline{AB} , \overline{BC} 의 중점이므로

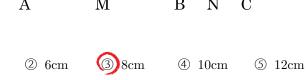
 $\overline{\mathrm{MB}} = \frac{1}{2}\overline{\mathrm{AB}} = 3(\,\mathrm{cm})\,$ 이고, $\overline{\mathrm{BN}} = \frac{1}{2}\overline{\mathrm{BC}} = 9(\,\mathrm{cm})\,$ 이다. 따라서 $\overline{\mathrm{MN}} = \overline{\mathrm{MB}} + \overline{\mathrm{BN}} = 12(\,\mathrm{cm})\,$ 이다.

31. $\overline{AB}=3\overline{BC}$ 이고, M, N 은 \overline{AB} , \overline{BC} 의 중점이다. $\overline{PC}=28$ cm, $\overline{PM}=18$ cm 일 때, \overline{MN} 의 길이는?

P A M BNC

① 6cm ② 8cm ③ 10cm ④ 12cm ⑤ 14cm

 32. 다음 그림에서 $\overline{AB}=4\overline{BN}$ 이고, \overline{AB} 의 중점을 M, \overline{BC} 의 중점을 N 이라 하였다. \overline{MN} 이 $6\mathrm{cm}$ 일 때, \overline{AB} 의 길이는?



① 4cm

 $\overline{AB}=4\overline{BN}$ 이므로 $\overline{MB}=2\overline{BN}$ 이다. 따라서 $\overline{MB}=4\mathrm{cm}$ 이고

 $\overline{AB} = 2\overline{MB} = 8$ (cm) 이다.

 ${f 33}$. 선분 AB의 삼등분점 중 점 A 에 가장 가까운 점을 P, 선분 AB의 오 등분점 중 점 B에 가장 가까운 점을 Q라고 한다. 선분 PQ의 길이가 21일 때 선분 AB의 길이를 구하여라.

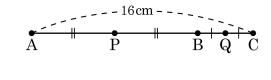
▷ 정답: 45

▶ 답:

지 = $\frac{1}{3}$ 지B, $\overline{BQ} = \frac{1}{5}$ 지B 이고 $\overline{AQ} = 4\overline{BQ}$ 이므로 선분 AB 의 길이를 x 라 하면 $\overline{AP} = \frac{1}{3}x$, $\overline{AQ} = \frac{4}{5}x$ $\overline{PQ} = \overline{AQ} - \overline{AP} = \frac{4}{5}x - \frac{1}{3}x = \frac{7}{15}x = 21$ $\therefore x = 45$

 ${f 34}$. 다음 그림에서 점 P는 선분 AB의 중점이고, 점 Q는 선분 BC의 중점이다. $\overline{AC} = 16$ cm 일 때, \overline{PQ} 의 길이를 구하여라.

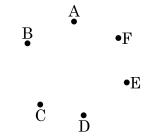
 $\underline{\mathrm{cm}}$



▶ 답: 정답: 8 cm

 $\overline{AP} = \overline{PB} = \frac{1}{2}\overline{AB}, \ \overline{BQ} = \overline{QC} = \frac{1}{2}\overline{BC}$ $\therefore \overline{PQ} = \overline{PB} + \overline{BQ} = \frac{1}{2}(\overline{AB} + \overline{BC}) = \frac{1}{2} \times 16 = 8(cm)$

35. 다음 그림은 한 직선 위에 있지 않은 여섯 개의 점이다. 그림에 대한 설명 중 옳지 <u>않은</u> 것은?



- 직선의 개수는 선분의 개수와 같다.
 반직선의 개수는 직선의 개수의 두 배이다
- ③ (직선의 개수)+(선분의 개수) = (반직선의 개수)
- ④ 직선의 개수는 10 개이므로 선분의 개수도 10 개이다.
- ⑤ 반직선의 개수는 30개이다.

④ 직선의 개수 $\frac{6 \times (6-1)}{2} = 15(7)$ 이다.

직선의 개수가 15 개이므로 선분의 개수도 15개이다.

36. 다음 그림에서 \overline{AB} 의 중점을 점 C 라 하고 \overline{CB} 의 중점을 D 라 하자. 또한 \overline{AD} 의 중점을 점 E , \overline{AC} 의 중점을 점 F 라 할 때, \overline{ED} 는 \overline{FD} 의 몇 배인가?

① $\frac{3}{16}$ 바 ② $\frac{3}{8}$ 바 ③ $\frac{3}{5}$ 바 ④ $\frac{3}{4}$ 바 ⑤ $\frac{3}{2}$ 바

$\overline{\mathrm{AB}} = 2x$ 라고 놓으면,

$$\overline{AC} = \overline{CB} = x, \ \overline{CD} = \overline{DB} = \frac{1}{2}x$$

$$\overline{AD} = \frac{3}{2}x, \ \overline{AE} = \frac{1}{2}\overline{AD} = \overline{ED} = \frac{3}{4}x$$

$$\overline{AF} = \overline{FC} = \frac{1}{2}x, \ \overline{FD} = \overline{FC} + \overline{CD} = x$$

$$\therefore \overline{ED} = \frac{3}{4}x = \frac{3}{4}\overline{FD}$$
이다.

37. 다음 그림에서 \overline{AB} 의 중점을 점 C 라 하고 \overline{CB} 의 중점을 D 라 하자. 또한 \overline{AD} 의 중점을 점 E , \overline{AC} 의 중점을 점 F , \overline{DB} 의 중점을 G 라 할 때, \overline{EG} 는 \overline{AB} 의 몇 배인지 구하여라.

A F E C D G B

답:

배

정답: 1/2 <u>배</u>

 $\overline{AB} = x$ 라고 놓으면,

 $\overline{AC} = \overline{CB} = \frac{1}{2}x$, $\overline{CD} = \overline{DB} = \frac{1}{4}x$, $\overline{DG} = \frac{1}{8}x$ $\overline{AD} = \frac{3}{4}x$, $\overline{AE} = \frac{1}{2}\overline{AD} = \overline{ED} = \frac{3}{8}x$

 $\overline{EG} = \overline{ED} + \overline{DG} = \frac{1}{2}x$ $\therefore \overline{EG} = \frac{1}{2}x = \frac{1}{2}\overline{AB}$

38. $\overline{AB}=12\mathrm{cm}$, \overline{AB} 위에 $\overline{AP}=2\overline{PB}$ 인 점 P 를 잡고, \overline{AB} 의 연장선 위에 $\overline{AQ}=2\overline{BQ}$ 인 점 Q 를 잡았다. \overline{AB} 의 중점을 M , \overline{PQ} 의 중점을 N 이라 할 때, \overline{MN} 의 길이는?

① 6cm ② 7cm ③ 8cm ④ 9cm ⑤ 10cm

해설 $\overline{A} \quad \overline{MP} \quad \overline{B} \quad \overline{N} \quad \overline{Q}$ $\overline{PB} = 4 , \overline{MB} = 6$ $\overline{PN} = 8$ $\therefore \overline{MN} = \overline{MB} + \overline{BN} = 6 + (8 - 4) = 10 \text{(cm)}$

39. 다음은 서로 다른 몇 개의 직선을 그어서 만들 수 있는 교점의 최대 개수이다. 그렇다면 직선 10 개를 이용하여 만들 수 있는 교점의 최대 개수는 몇 개인가?

직선의 수	1	2	3	4	•••	10
그림		\times	X	\times	•	?
최대 교점의 개수	0	1	3	6		?

② 45 개 ③ 50 개 ④ 55 개 ⑤ 60 개

한 개의 직선은 교점이 없으므로 0 개, 두 개의 직선으로 만들 수

① 40 개

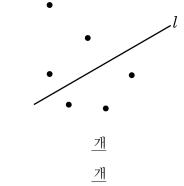
해설

있는 교점의 개수는 1 개이다. 3 개의 직선으로 그릴 수 있는 교점의 최대의 개수는 이미 그려진 교점 하나와 두 직선이 만나서 생기는 교점 2 개를 더하면 (1+2)

교점 하나와 두 직선이 만나서 생기는 교점 2 개를 더하면 (1+2) 개이다. 4 개의 직선으로 그릴 수 있는 교점의 최대의 개수는 이미 그려진 3 개와 세 직선이 만나서 생기는 교점 3 개를 더하면 (1+2+3)

개이다. 따라서 이런 방법으로 10 개의 직선으로 그릴 수 있는 최대교점의 개수는 $1+2+3+4+\cdots+9=45$ (개)이다.

40. 다음과 같이 7 개의 점은 직선 l 위에 있지도 않고 어느 세 점도 한 선분 위에 있지 않을 때, 이 점들 중 두 점을 지나는 선분이 직선 l 과 만나는 선분의 개수와 만나지 않은 선분의 개수를 차례대로 각각 구하여라.



➢ 정답 : 12 <u>개</u>

▷ 정답: 9<u>개</u>

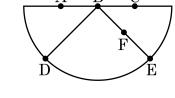
답:

답:

해설

두 점을 지나는 선분이 직선 l 과 만나려면 직선 l 의 위쪽에 있는 4 개의 점과 직선의 아래쪽에 있는 3 개의 점을 연결하면 된다. 따라서 $4 \times 3 = 12$ (개)이다. 또한 직선 l 과 만나지 않은 선분은 직선 l의 위쪽에 있는 4 개의 점만으로 만든 선분과 아래쪽에 있는 3 개의 점으로 만든 선분이므로 각각 구하면 $4 \times 3 \div 2 = 6$ (개)이고, $3 \times 2 \div 2 = 3$ (개)이다. 따라서 만나지 않은 선분의 개수는 6 + 3 = 9 (개)이다.

41. 다음 그림과 같이 중심이 B 인 반원 위에 점 6 개가 있다. 이들 중 두 점을 지나는 직선의 개수를 x 개, 두 점을 지나는 반직선의 개수를 y 개, 두 점을 지나는 선분의 개수를 z 개라 할 때, x + y + z 의 값을 구하여라.



답: ▷ 정답: 52

두 점을 지나는 선분의 개수는 $6 \times 5 \div 2 = 15$ (개) 이므로 z = 15

해설

이다. 두 점을 지나는 직선의 개수는 직선 BE, BF, EF 는 같은 직선 이고, 직선 AB, BC, AC 도 같은 직선이므로 15 - 2 - 2 = 11

(개), 따라서 x = 11 이다. 어떤 세 점도 같은 직선 위에 있지 않을 때의 두 점을 지나는 반직선의 개수는 $6 \times 5 = 30$ (개)

그런데 반직선 BF 와 반직선 BE 는 같은 반직선이고, 반직선 EF 와 반직선 EB 도 같은 반직선이고, 또 반직선 AB 와 반직선 AC 는 같은 반직선이고, 반직선 CA 와 반직선 CB 도 같은 반 직선이므로 반직선의 개수 y = 30 - 4 = 26이다.

따라서 x + y + z = 11 + 26 + 15 = 52이다.

42. 하나의 직선 위에 n 개의 점이 있다. 이 점으로 만들 수 있는 서로 다른 선분의 개수를 a, 서로 다른 반직선의 개수를 b, 서로 다른 직선의 개수를 c 라 할 때, $\frac{a(c+3)}{b}$ 을 n 을 사용한 식으로 나타내어라.

 ► 답:

 ▷ 정답:
 n

--- 하나의 직선 위에 있는 n 개의 점으로 만들 수 있는 직선은 1 개

밖에 없으므로 c=1, 또 선분의 개수는 $\frac{n(n-1)}{2}$ (개)이고, 반직선의 개수는 2(n-1)

(케)이므로 $\frac{a(c+3)}{b} = \frac{n(n-1) \times (1+3)}{2 \times 2(n-1)} = n$ 이다.

2 × 2(1 1)

43. 수직선 위에 세 점 A(0), B(x), C(y) 가 있다. 선분 AB 를 3:2 로 내분하는 점의 좌표가 3 이고, 선분 BC 를 3:2 로 외분하는 점의 좌표가 7일 때, x + y의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{32}{3}$

해설

선분 AB 를 3 : 2 로 내분하는 점의 좌표는 $\frac{3 \times x + 2 \times 0}{3 + 2} = 3$ 이므로

 $\frac{3x}{5} = 3 \qquad \therefore \ x = 5$

선분 BC 를 3:2 로 외분하는 점의 좌표는

전문 BC 를 3:2 로 되는 이는 $\frac{3 \times y - 2 \times x}{3 - 2} = 7$ 이므로 3y - 2x = 7 $\therefore y = \frac{17}{3}$ 따라서 $x + y = 5 + \frac{17}{3} = \frac{32}{3}$